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SoA – Visual Analytics 

 
The main idea of Visual Analytics (VA) is to develop knowledge, methods, technologies and practices 
that exploit and combine the strengths of human and electronic data processing (Keim et al. 2008a). 
Visualization is the means through which humans and computers cooperate using their distinct 
capabilities for the most effective results. Visual analytics is “the science of analytical reasoning 
facilitated by interactive visual interfaces” (Thomas & Cook, 2005a, p. 4), which focuses on developing 
human-computer methods and procedures for data analysis, knowledge building, and problem solving 
(Keim et al. 2010a). Visual analytics leverages methods and tools developed in other areas related to 
data analytics, particularly statistics, machine learning and geographic information science (Andrienko 
& Andrienko, 2012a). Visual analytics tools address the complex task of presenting multi-dimensional 
information in several displays of interactive 2D projections. The main components of a VA tool consist 
of a set of selectors and aggregators in a combination with visual facilities to drill down into the 
available information and to maintain synchronized displays. 

 

1 Visual Analytics for Big Mobility Data1 
 Transportation Data 

(Andrienko et al. 2017a) focus on (i) data, (ii) movements and people behaviour, and (iii) modelling 
and planning. 

Data and Data transformations 

The proposed data typology distinguishes spatial events (bound to a certain location and lasting for a 
limited time), trajectories (chronologically ordered records describing position of a moving object) 
spatially referenced time series (chronologically ordered sequences of values of time-variant thematic 
attributes associated with fixed spatial locations or stationary spatial objects). Trajectories are either 
quasi-continuous (when it is possible to plausibly estimate intermediate positions) or episodic (in the 
extreme case only the origin and destination of the trajectory are known). A set of interesting 
representation methods for the different types can be found in (Andrienko et al. 2017a). 

 
1 The content of this section is based on (Andrienko & Andrienko, 2012a), Andrienko et al. (2017) (Andrienko et 
al. 2017a) and (Andrienko et al. 2016c). Most of the text below was taken from these papers and only slightly 
adapted. 
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Figure 1: The principal transformations applicable to movement data, depending on the task/analysis goal 

(taken from (Andrienko et al. 2017a)). 

A summary of possible transformations between the spatiotemporal data types is presented in Figure 
1. The left part of the diagram shows the tight relationships between spatial events and trajectories. 
In fact, trajectories consist of spatial events: each record in a trajectory of an object represents a spatial 
event of the presence of this object at a specific location at some moment in time. 

Other transformations may be beneficial for particular tasks. For example, (Chu et al. 2014a) transform 
trajectories of taxis into sequences of the names of the traversed streets and apply text mining 
methods for discovery of “taxi topics”, i.e., combinations of streets that have a high probability of co-
occurrence in one taxi trip. 

Andrienko et al. (2017a; 2017b) present an overview of visual representations and interactive 
techniques for detailed exploration of following classes of data: (i) individual movements, (ii) sets of 
taken routes, (iii) movement dynamics along a particular route, (iv) sets of origin-destination pairs, (v) 
collective movement over a territory, (vi) events (including extraction of events), (vii) contextualized 
movement (e.g. by integrating with meteorological data), (viii) impacts and risks (e.g. exposure to 
pollutants which is also a form of contextualizing). 

Movement and people behavior 

VA provides tools to investigate the use of transportation means by people. The existing techniques 
analyze the spatial and temporal patterns and trends, reveal behavioral differences between user 
groups, and relate the use of transport to the spatial and temporal context and people’s activities. 
Human mobility behaviors over public transit systems are commonly explored to identify commute 
patterns and reveal behavioral differences. For example, (Wood et al. 2011a) and (Beecham & Wood, 
2014a) visualize and analyze the dynamic patterns of a bicycle hire scheme in London. 

(Laharotte et al. 2015a) used Bluetooth detectors in Brisbane to create B-OD matrices to describe the 
dynamics of a subpopulation of vehicles to characterize urban networks. van der Hurk et al. (Hurk et 
al. 2015a) present a methodology for extracting passenger routes based on smart card data from the 
Netherlands Rail System. (Kieu et al. 2015a) explored the use of smart card data for passenger 
segmentation. 

(Kruger et al. 2013a) develop an interaction technique, TrajectoryLenses. Complex filter expressions 
are supported by the metaphor of an exploration lens, which can be placed on an interactive map to 
analyze geospatial regions for the number of trajectories, covered time, or vehicle performance. 
Another work by Kruger et al. (2015a) enriches the trajectories of the scooter users with semantic 
information concerning the visited places to infer users’ activities and travel purposes. Semantic 
insights of points of interest are discovered from social media services. The uncertainties in time and 
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space, which result from noisy, imprecise, and missing data, are visually analyzed by the geographic 
map view and a temporal view of OD patterns. 

Mass mobility 

The works described in this subsection deal with analyzing people’s collective mobility behavior, i.e., 
mass movements. This includes routine daily and weekly patterns as well as anomalies due to 
extraordinary events. 

Von Landesberger et al. (Landesberger et al. 2016a) present an approach to explore daily and weekly 
temporal patterns of collective mobility, where the source data are episodic trajectories of people 
reconstructed from georeferenced tweets or mobile phone use records. The trajectories are 
aggregated into flows between territory compartments by hourly intervals within the weekly time 
cycle. 

(Beecham et al. 2014b) present a technique for automatically identifying com- muting behavior based 
on a spatial analysis of cyclists’ journeys. They use visual analytics to compare the output of various 
workplace identification methods to explore data transformations and present insights to analysts in 
order to develop origin-destination theories of commute patterns. 

(Ma et al. 2016a) also develop methods for studying urban flow. This work uses cell phone location 
records to approximate trajectories across a city, and flow volumes, links, and communities of users 
are visualized to help analysts identify typical patterns of movement within the city. 

Similarly, work by Yang et al. (Yang et al. 2016a) focuses on identifying human mobility hotspots based 
on mobile phone location data from Shenzhen, China. 

Yang et al. applies kernel density estimation and clusters identified hotspots based on the temporal 
signatures to identify spatial locations with high travel demand. 

Work by (Chae et al. 2014a) develops a visual analytics framework for exploring public behavior before, 
during, and after disaster events. This work utilizes geographically referenced Tweets to create 
movement trajectories during disasters to identify evacuation flows. Interactions allow users to drill 
down into the data to also look at the underlying discourse occurring around the movements. 
Infrastructure data, disaster data (such as hurricane tracks), and Twitter data are all provided as map 
overlays in order to enable decision support and analysis. 

People’s activities and interests 

In order to understand the current use of transportation systems and plan for expansion and 
development, it is helpful to understand the reasons why people travel, i.e., the activities and interests 
related to traveling. Recent work by Andrienko et al. (Andrienko et al. 2016a) presents a procedure for 
obtaining data similar to personal daily mobility diaries. Such a diary reports what places were visited 
by a person during a day, at what times, and for what purposes. The presented procedure aims at 
extracting similar information from long term sequences of spatio-temporal positions of people, which 
may come from georeferenced tweets or from mobile phone use records. From these sequences, the 
proposed procedure extracts repeatedly visited personal and public places along with the times these 
places were visited within the daily and weekly cycles. An interactive interface involving techniques 
for multi-criteria evaluation and ranking supports assignment of probable meanings (‘home’, ‘work’, 
‘eating’, ‘shopping’, etc.) to subsets of places based on visit times and information about the land use 
or point of interest categories at these places. The analysis is done in a privacy-respectful manner 
without accessing individual data. 

Modelling and planning 

This section reviews research in visual analytics concerned with traffic modeling and transportation 
planning. This includes the derivation of models from data, applications of traffic forecasting and 
simulation models, transportation scheduling, and the exploration of decision options. 
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There is a series of works showing how predictive models of vehicle traffic can be derived from 
historical data consisting of a large number of vehicle trajectories (Andrienko & Andrienko,2013b), 
(Andrienko et al. 2015a), (Andrienko et al. 2016b). The approach is based on spatial abstraction and 
aggregation of the trajectory data into collective movements (flows) of the vehicles between territory 
compartments. The authors discovered that the dependencies between the traffic intensities and 
mean velocities in an abstracted transportation network at different levels of abstraction (Figure 2) 
have the same shapes as in the fundamental diagram of the traffic flow described in traffic theory 
(Gazis,2002a). While the fundamental diagram refers to links of a physical street network, it turns out 
that similar relationships also exist in abstracted networks. These dependencies can be represented 
by formal models (Figure 3). 

 

 
Figure 2: Hourly time intervals over a week have been clustered by the similarity of the spatial 
situations in terms of the flow magnitudes and average speeds. In a time matrix at the top, the 
rows correspond to the days from Sunday to Saturday and columns to the day hours. The time 
intervals are represented by rectangles coloured according to the cluster membership; the 
sizes show the closeness to the cluster centres. Below, representative spatial situations for the 
clusters are shown by flow maps. In the upper set of 8 maps, the widths of the flow symbols are 
proportional to the mean flow magnitudes. The lower set of 8 maps represents how the mean 
speeds in the clusters differ from the median mean speed attained on the links. Positive and 
negative differences are encoded by proportional widths of flow symbols coloured in brown 
and blue, respectively (Andrienko et al. 2013a). 
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Figure 3: Dependencies between the traffic flow intensities (hourly volumes) and mean velocities 
on the links of an abstracted transportation network at different levels of abstraction. A: 
Abstracted networks with the cell radii of about 1250 m (left) and 4000 m (right). The links are 
clustered and coloured according to the similarity of the volume-speed dependencies. B: The 
dependencies of the mean velocity (vertical dimension) on the traffic flows (horizontal 
dimension): the velocities decrease as the flows increase. C: The dependencies of the flows 
(vertical dimensions) on the velocities (horizontal dimension): maximal flows can be achieved 
for certain velocities and decrease for both lower and higher velocities (Andrienko et al. 2015a). 

 

Historical traffic data can be used not only for predicting future movements under various conditions 
but also for spatial planning applications. For example, the system SmartAdP (Liu et al. 2017a) uses 
interactive visual tools to find suitable locations for billboard placement using taxi trajectories. 

The task of transportation scheduling is addressed by (Andrienko, 2008a). An example application is 
planning of evacuation of different groups of people, such as general population, schoolchildren, and 
hospital patients, from a disaster-affected area. The proposed system consists of a scheduling 
algorithm and a set of visual displays and interactive tools for exploring scheduling outcomes. The 
displays al- low the user to detect problems, such as delays, understand their reasons, and find 
appropriate corrective measures. 
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Figure 4: For one of the clusters of links of an abstracted transportation network, the 
dependencies flow ✙ velocity (top) and velocity ✙ flow (bottom) are being represented 
by polynomial regression models (Andrienko & Andrienko, 2013b). 

 

 Assessing data quality 

Abstracting from the various specific technologies for collecting movement data, we identify several 
major methods of position recording (Andrienko,2008c): (i) Location-based, (ii) Time-based, (iii) 
Change-based, (iv) Event-based and (v) Combinations of these basic approaches. In particular, GPS 
tracking devices may combine time-based and change-based recording: the positions may be 
measured at regular time intervals, but recorded only when significant changes of position, speed or 
direction occur. 

As in (Andrienko et al. 2008c) two classes of properties are distinguished: 

1. Data structure related properties 
• Mover set properties 
• Spatial properties 
• Temporal properties 

2. Data collection procedure related properties 
• position exactness, 
• positioning accuracy, 
• missing positions and 
• meanings of the position absence 

Data quality problems are classified using their kind, the data to which the problem applies, the extent 
of the problem in the dataset and the extent of the problem in the respective value domain. A problem 
labeling system is introduced in Andrienko et al. (2016) and presented here using a slightly adapted 
(by adding punctuation) notation. 
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Problem kind: M = missing data, A = accuracy problem, P = precision deficiency  

Data components: Mv = mover identification, S = spatial position, T = tem- poral reference, At 
= thematic attributes 

Extent in the trajectory: TrE = elementary (in some elements), TrI = inter- mediate (in particular 
subsequences), TrO = overall (in whole trajectory) 

Error occurrence can be formulated using formulas similar to M: TrO ∪ MvO ∪ SO ∪ TO which allows 
for systematic enumeration of error types and the VA tools required to detect and remove problems. 
Detailed examples are given in Andrienko et al. (2016). 

Each kind of problem mentioned in section 3.3 can have several causes and emanations (forms of 
occurrence) and hence may require multiple types of VA detection tools. Several techniques to validate 
the data quality w.r.t. several criteria are listed in Andrienko et al. (2016). Such criteria may be problem 
or dataset specific and hence not expected in advance (e.g. the positional shift of particular traces in 
space). An inherent property (see main characteristics) of VA is the ad hoc interactive way of the data 
handling procedures. Therefore, a generic toolbox needs to be created based on the anticipated use 
cases and prior experience. 

The presented examples show cases where the problem was discovered and identified using visual 
analytics: in big data this will no longer be possible and new methods need to be found based on 
criteria involving properties of the trajectory, the set of trajectories and the environment. Problem 
detection by interactive use of VA tools will be much less probable due to the large data size; hence 
the importance of prior enumeration of potential errors and the availability of a tool to define dataset 
specific validation criteria. 

 VA in Transportation Science 

In Andrienko et al. (2017), the authors observe that the contribution of transportation scientists 
in VA projects is rather limited although VA typically requires the help of domain experts. 
”Unfortunately, such work has been limited in the transportation domain (Ferreira et al. 2013a), 
(Fredrikson et al. 1999a), even though visual analytics researchers have intensively worked with 
transportation relevant data and developed a variety of methods and tools that could be useful for 
transportation domain researchers and practitioners. . . . The consequences of the insufficient 
communication are two-fold. On the one hand, visual analytics researchers have only limited 
understanding of the problems, needs, and constraints of the transportation domain, which may decrease 
the potential utility and usability of the methods they develop. On the other hand, the transportation 
community has quite limited awareness of what visual analytics can offer. In the conclusion the authors 
observe: ”Both the visual analytics community and transportation community has produced a large 
body of exploratory research work in analyzing transportation-related data. However, the knowledge 
acquired and methods developed often lack collaboration between the two communities.” 

Clearly the problems solved by the VA community do not sufficiently coincide with the problems 
encountered by the transportation research community. Potential causes are: 

• In (big) data the travel/movement purpose is often missing and needs to be de- rived from 
the movement and environment properties which requires prediction models because 
traveling individuals have particular beliefs, attitudes and goals defining their behavior. 
VA tools can be used to describe the resulting travel behavior but delivering predictive 
models is difficult. 

• Data are extremely expensive (and out of reach of researchers and practitioners in the 
transportation domain). Pre-processed data can be purchased from the data 
generators/owners (telecom and ICT companies) in some cases but few information is 
made available about the pre-processing methods (aggregation, pseudonymisation, etc). 
Few affordable data are available to researchers in charge to answer specific research 
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questions related to a given area. On the other hand VA tools are used by industrial 
companies who have data available2. 

This section lists some of the classes of currently open research questions, challenges and 
opportunities to unite VA with the transportation field needs. 

Thereto, we need to keep in mind that travel demand is a derived demand. In most cases, the trip 
is not a goal by itself but a mean to achieve a goal. In activity-based modelling it is assumed that 
for a given period of time the goals and intentions of individuals determine their time use and 
displacements. In this case there is a hidden model (much more complex than a HMM) that 
controls the observed behaviour and that in many cases cannot be derived from mobility big data. 
Understanding the behavioural model is a prerequisite for the evaluation of intended travel 
demand measures (TDM). (Andrienko & Andrienko,2017b) explain the integration of state 
diagrams describing travel behaviour in VA. 

Research Questions 

Problems solved by transportation planners can be classified as follows by the size of the set of 
travellers involved. 

1. problems involving a small set of affected individuals: 
a. Operations research (OR) like solutions to particular problems (short term, static 

environment): the aim is to provide advice to customers of transportation 
services. It requires streaming data (parking, expected congestion, incident 
detection, …) 

b. Traffic safety research is interested in hot spots, their physical properties (road 
infrastructure design) and the usage profile (timing, vehicle properties, movement 
properties). Incidents are often related to detailed interactions between one actor 
and the environment (requiring detailed description of local situations) or 
between multiple actors (requiring detailed description of their behaviour in a 
short period preceding the (near) accident). 

2. problems involving a large set of affected people 
a. short term (one week to one year): problems due to planned sudden local changes 

in a static environment. Traffic guidance measures can be put in place based on 
flow prediction models. VA can be used to show the recent (1 hour) history and 
the near future prediction in order to generate advice to the transportation 
system operation management. 

b. long term: TDM’s effect prediction (long term, evolving environment, evolving 
actors): advice to designers of transportation systems (urban planners, regional 
development managers, public service, ...). As mentioned above, activity-based 
modelling is used to this end. Following travel generators can be distinguished: 

i. households: members execute frequently recurring activities (for several 
purposes) as well as exceptional ones. All activities aim to the achievement 
of a private goal/purpose (e.g. by maximizing utility de- rived from activity 
execution). 

ii. business/commercial: trips are executed on behalf of or indirectly 
triggered by households and aiming to achieve of a goal stated by a third 
party (example: parcel delivery) 

Activity based modelling nearly exclusively focuses on travel generated by households. It is 
important to estimate the number and properties of business/commercial since modelling travel 
demand induced by companies turns out to be problematic due to lack of data. Big data and VA 
may contribute to solve the problem by classifying daily movements of vehicles from revealed 

 
2 e.g. https://www.be-mobile.com/products/flowcheck/. 
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trajectories w.r.t the distance driven, the number of trips in a tour (number of visited places), 
clustering visited locations etc. Classes may coincide with taxi-like pattern, sales/service-person 
like pattern, packet-delivery like pattern. After finding patterns their share in the flow may be 
estimated. Particular attention is to be paid to bias in the available datasets. 

Data availability challenges 

1. In order to solve some of the above questions, person traces instead of car traces are 
required. These may be collected by smartphones but induce more privacy problems than 
car traces and are more difficult to process (because of trip and mode detection). 

2. In order to capture behavioural aspects of travel, longitudinal (as opposed to cross-
sectional) data and privacy preserving measures are required. These requirements may 
be mutually incompatible (see the issue of mover identity errors mentioned earlier.  

3. Streaming data may originate from parking use or as floating car data; however, no such 
data will be available in the project (none are known to be available for research) 

RAM problem 

VA tools need to be adapted to the use of large datasets because they typically use RAM based 
datasets. In (Andrienko & and Andrienko,2012a) the authors propose to use a stepwise approach 
by which data aggregations are created in advance and loaded into RAM for processing by VA 
tools. 

Dedicated procedures need to be designed for data quality assessment (see also section 3.3 
because preprocessing by aggregation-based methods may be insufficient 

 

2 Visual Analytics for Complex Event Recognition 

Few research works focus specifically on Complex Event Recognition in Visual Analytics: in fact, CER 
research covers various formal languages and models which are hard to be studied in a same unique 
framework. However, main ingredients in CER are multivariate time series and event sequences. In 
these domains, the visualization of data streams has attracted increased interest the last decade. The 
research work reviewed in the following focus mainly on visualization of multivariate time series and 
of simple event patterns, without elaborate first-order logic or entanglement of events as CER can deal 
with. Nevertheless, these techniques are of interest to T&K, providing basic bricks to understand the 
challenge of CER visualization. The final part of the review is dedicated to dimension reduction 
techniques allowing to summarize in a few dimensions the original data lying in a high dimensional 
space. These techniques have been successfully adapted to multivariate time series data and it will be 
interesting in the T&K project to investigate the hybridation of usual visual analytics techniques and 
dimension reduction approach, especially in the context of representational learning.  

Number of tools have been developed to visualize raw sequences of events. For instance, LifeLines 
(Plaisant et al. 1996) is dedicated to personal medical histories visualization providing a hierarchical 
timeline visualization. Events are placed on a time-line accordingly to their occurrences; color encoding 
and lines with different thickness illustrate the relationship between the events. CloudLines (Krśtajic et 
al. 2011) use a logarithmic time scale to allow the visualization of recent events together with long term 
patterns at any time scale. ChronoLense (Zhao et al. 2011) emphasizes on the usage of different lenses 
(possibly with the user interaction) to navigate through the time series. These techniques are well 
adapted to explore with precision time series and individual traces but do not aggregate or factorize 
the event streams and thus do not scale with large event collections or many time series.  

Other approaches try to summarize multivariate time series in a high dimensionality setting in order 
to visualize the data. TimeSeer (Dang et al. 2013) proposes the notion of scagnostics to capture the 
characteristics of the data based on a set of measure (density, skewness, …). Scatterplot matrix and 
charts are used next to interactively explore the data. ThemeRiver (Havre et al. 2000) is another well 
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know technique to analyze variation and exchange between event streams. RankExplorer (Shi et al. 
2012) extends ThemeRiver in a framework for big stream data analysis. In the context of spatio-
temporal data analysis, (Tominski et al. 2012) proposes to stack 2D visualization in a 3D representation 
to analyze trajectories; (Scheepens et al. 2011) uses density fields to capture the multivariate aspect of 
the time series.  

Another way to summarize multivariate time series is to factorize the event streams thanks to a tree 
structure: LifeFlow (Wongsuphasawat et al. 2011) and EventFlow (Maguire et al. 2013) aggregate time 
series with respect to common subsequences to provide a tree-like visualization. However, the tree 
structure grows exponentially with the number of events which hinders the visualization. Graph 
structures can also be used to analyze time series: Sankey diagram (Riehmann et al. 2005) and derivate 
techniques (Wongsuphasawat, 2012) are techniques intensively used to analyze the event flow 
between states of a system. To improve the readability of the Sankey diagram when the graph of states 
is dense, MatrixFlow (Perer et al. 2012) represents spatio-temporal data with sequences of matrices; 
MatrixWave (Zhao et al. 2015) improves the use of matrices by apprehending the event flow between 
the states.  

An orthogonal family of approaches is the dimension reduction methods. The objective of this kind of 
approach is to compress the time series expressed in a high dimensional space into a very few number 
of dimensions – ideally two – losing the less possible important information. The low dimension 
projected space can be used to visualize meaningfully the originally high dimensional data. The most 
used technique, the Principal Component Analysis (PCA) (Candès et al. 2011), which use linear 
projections to reduce the number of dimensions, has been adapted to temporal data in various works 
(Yang & Shahabi, 2004) (Liao, 2005). Derived from PCA, Dictionary Learning techniques (Mairal et al. 
2009) use combination of weighted atoms to approximate the time series, each atom representing an 
elementary behavior shared among number of time series. The Non negative Matrix Factorization 
method (Cichocki et al. 2009) introduces a constraint on the recombination of the atoms, allowing only 
additive reconstruction. This leads to a better interpretation of the atoms. 

Another very active domain in dimension reduction topic is the Representation Learning (Bengio et al. 
2013), leaded by the research on deep learning (Lecun et al. 2015). The objective is to learn non linear 
projection – embeddings - of the data in an unsupervised context generally thanks to a deep neural 
network. A special case is the auto-encoder model, applied successfully to time series (Längkvist et al. 
2014). The architecture involves an encoding module and a decoding one. The encoding module 
projects an input data into a latent space through different neuronal layers with a decreasing number 
of neurones. The decoder has a mirror architecture, with first layers containing the less neurones and 
the last layer the same amount as the first layer of the encoding module. The embedding 
representation in the latent space is learned by a measure of divergence between the input data and 
the output one: the network learns to reconstruct the original signal with the less distortion possible 
compressed in a low dimension space. As the layers are connected by non linear functions, the 
embedding are more expressive than with usual dictionary learning techniques.  

Other techniques for dimension reduction use similarity measures to embed the data in a low 
dimensional space. A widely used approach is the multidimensional scaling (Cox et al. 2001), organizing 
the data in a 2D space such as the distances in the projected space are close to the distance in the 
original space. The T-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 
2008) is privileged for data in high dimension. The algorithm defines two probabilistic models over the 
distance between each couple of points, the first one in the original space, the second one in the low 
dimensional representation space. It learns the representation in order to optimize the minimal 
divergence between the two probability distributions. 
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3 Cross-scale analysis and dashboards for populations’ mobility 
 Aggregate visualizations and cross-scale analysis 

Aggregate visualizations of trajectory data in mobility analytics can be seen to pertain to two main 
areas: cross-scale analysis, used to adjust the analysis scale to the scale of the mobility pattern(s) 
studied; and aggregation of mobility-related parameters and trajectory geometries. 

Due to the effect of internal and external factors influencing the movement at different spatial and 
temporal scales, behaviours may manifest different movement patterns at different scales (Nathan et 
al. 2008); see Figure 5. Therefore, recently, the importance of scale, and thus of cross-scale analysis 
has been acknowledged in the literature (Keim et al. 2008; Laube & Purves, 2011; Soleymani et al. 
2014), and a number of methods and algorithms capable of investigating the relationships between 
patterns and processes occurring at multiple spatial and/or temporal scales of movement have been 
developed. Laube & Purves (2011) systematically explored the effects of computing movement 
parameters across different temporal scales, and thus demonstrated that adjusting the analysis scale 
is crucial to obtain meaningful results. Recently, more progress has been made, such as developing 
new multi-scale measures (e.g., multi-scale straightness index (Postlethwaite et al. 2013)), patterns 
detection using Brownian bridges in low sampling rate movement data (Buchin et al. 2012), 
measurement of dynamic interactions in movement (Long & Nelson, 2013), or the use of the discrete 
wavelet transform for movement classification and trajectory segmentation at different spatio-
temporal scales (Soleymani at al. 2017). While relevant methods have been developed for cross-scale 
analysis in the spatial and temporal domain, it should be noted that the issue of scale also applies to 
semantic aspects of movement, where research is still very limited. To gain a comprehensive 
understanding of mobility, cross-scale analysis methods should be developed considering spatial, 
temporal as well as semantic aspects. 

 
Figure 5: Mobility behaviours may manifest different movement patterns at different scales (i.e., spatial, 
temporal, or thematic scale). The above shows an example in animal ecology (adapted from Nathan et al. 
2008). 

Aggregation in support of visualization may affect either the computation of mobility-related 
parameters or the summarization of the trajectory geometries. Aggregation of mobility-related 
parameters may take place over different windows of time, different (possibly hierarchical) spatial 
units, or combination thereof, and may take the form of simple aggregation to advanced data 
modelling algorithms (Zhang et al. 2012). Andrienko & Andrienko (2008) introduce methods that allow 
aggregating parameters related to mobility and trajectories in the temporal, spatial and spatio-
temporal domains. 
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Summarizing trajectory geometries typically follows two strands. In the first strand, the geometries 
(and associated movement parameters) are aggregated to cells of a tessellation. Examples of this 
approach include Lee et al. (2009), who use a tree data structure for aggregation, as well as Andrienko 
& Andrienko (2011), where the spatial aggregation units consist of Voronoi cells that capture the 
essential characteristics of the original trajectories around a subset of ‘significant points’. In the second 
strand of approaches, the geometry of bundles of trajectories is represented by a ‘placeholder’ that 
approximates the shape and position of the trajectory bundle. Examples of this group include the 
TRACLUS clustering algorithm (Lee et al. 2007) and various decedents thereof, algorithms for 
generating centroid trajectories under positional uncertainty (Pelekis et al. 2011), and algorithms for 
creating median trajectories (Figure 6; Buchin et al. 2013). 

 
Figure 6: Trajectory aggregation: median trajectory. a) Three trajectories with a common start and end point; 
b) a median trajectory (bold) representing these three trajectories (Buchin et al. 2013). 

Trajectories can also be aggregated from the semantic perspective (Wan et al. 2017), besides the 
geometry-centered methods. Geographical context is one of the essential semantics for trajectories. 
Semantic enrichment associates special semantics of geographic entities to trajectories by spatial co-
location for more complex trajectory modeling (Alvares et al. 2007). The geographical entities can be 
a variety of types, including roads (Yuan et al. 2010, Mattheis et al. 2014, Quddus and Washington 
2015), points-of-interest (POIs, Wu et al. 2015a, Arslan et al. 2018), land use parcels, and meaningful 
locations derived from the raw trajectory (Siła-Nowicka et al. 2016). As the geographical contexts may 
also have a semantical hierarchy, e.g., the taxonomy of POIs and land use, semantics-based trajectory 
aggregation may also happen at different scales, which thus leads to possible comparison analytics 
across different semantical scales, similarly to the cross-scale analysis from the geometrical 
perspective. 

 

 Dashboards 

Few (2006, p. 26) proposed a commonly accepted definition of a dashboard as “a visual display of the 
most important information needed to achieve one or more objectives, consolidated and arranged on 
a single screen so that the information can be monitored at a glance”. It often combines text and 
graphs, with an emphasis on graphics (e.g., maps) to visually present the overview information (Figure 
7). Dashboards allow users to explore their data, “not only in terms of spatio-temporal aspects, but 
also in terms of attribute aspects” (Rahman 2017, p. 1). By nature, dashboards are especially used for 
providing an overview as they visualize the most essential information at a glance. Very often a 
dashboard consists of a set of visualizations and controls, allowing interactions such as selection, 
filtering, and drilling down (Zhang et al., 2012). The use of dashboards has become popular in many 
fields, such as marketing (Krush et al. 2013), public health (Lechner & Fruhling 2014), construction 
(Guerriero et al. 2012), urban development (Scipioni et al. 2009), education (Maldonado et al. 2012), 
and transport monitoring (Rahman 2017). 

There are different ways to categorize dashboards. Few (2006) classified them into three groups 
according to their roles: strategic, analytical and operational. Pappas & Whitman (2011) and Rahman 
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(2017) provided a detailed comparison of these three groups, in terms of supporting scenarios, 
timeframe, graph presentation, interactivity, and update frequency.  

- Strategic dashboards: They are the most popular type. They provide a quick overview of the 
data with the notion to enable decision makers to monitor the health and opportunities of 
the business. Very simple graphs that show what is going on without much interactivity work 
well for this type of dashboards (Rahman 2017). They don’t need real-time data, but still need 
regular update, e.g., daily, weekly or monthly.  

- Analytical dashboards: This group of dashboards often offer greater context than just simple 
overview in strategic dashboards. They show trends or patterns reflected in the data, and 
enable further explorations, such as drilling down into the underlying details. Like the previous 
group, simple graphs work well for analytical dashboards, but with extensive interactivity to 
allow users to explore the details. They often use historical data. 

- Operational dashboards: They represent the most dynamic type compared to the other two 
groups. They help to monitor situations and act as soon as possible according to particular 
conditions (Rahman 2017). Highly dynamic graphs such as animated displays work best. They 
can warn users of outliers or when something goes wrong. Usually, real-time data or near 
real-time data are required for operational dashboards.  

 

 
 

Figure 7: Dashboard examples created in the Tableau software3. Different visualization methods can be 
integrated, such as charts, maps, and even simple texts. 

Few (2006) reviewed many existing dashboards, and identified 13 common pitfalls of dashboard 
design, including: exceeding the boundaries of a single screen, supplying inadequate context for the 
data, displaying excessive detail, expressing measures indirectly, choosing inappropriate media of 
display, introducing meaningless variety, using poorly designed display media, encoding quantitative 
data inaccurately, arranging the data poorly, ineffectively highlighting what’s important, cluttering the 
screen with useless decoration, misusing or overusing color, and designing unattractive visual displays.  

To effectively communicate information, a dashboard should be properly designed, particularly using 
the right visualization (Rahman 2017). Ware (2012) and Few (2006) argued that research on visual 

 
3 URL: https://qph.ec.quoracdn.net/main-qimg-000650654f2338d4828bb89ab106ffa8. 
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perception provides empirical evidences on this aspect, such as those on short-term visual memory, 
visual encoding of rapid perception, and gestalt theory. Few (2006) further proposed two fundamental 
principles for appropriate visualizations: 1) it must be the best means that is commonly found, 2) it can 
be still functional even in a small space. Six types of visualizations were proposed: graphs, images, 
icons, drawing objects, text, and organizers. Pappas & Whitman (2011) further proposed guidance for 
choosing the right visualizations for dashboards, such as providing interactivity for strategic and 
analytic dashboards, and allowing comparisons. Zhang et al. (2012), ActiveWizards (2018) and Machlis 
(2017) all provide detailed reviews of commercial visualization systems that might be used for the 
implementation of dashboards. 

Mobility is one area that stands to benefit from dashboard development. The broader interest or task 
in analyzing mobility data is understanding or predicting movement and mobility patterns and 
behaviors (Andrienko et al. 2007). Examining how people move within built and natural environments 
is relevant to a variety of disciplines concerned with the day to day activities that people carry out 
(e.g., work, shopping, recreation) and many typical use-cases of mobility data visual analytics relate to 
transportation, including movements of vehicles, bicycles, and pedestrians within routes or transport 
systems and other interactions with built and natural environments (Menin et al. 2019, Nazemi and 
Burkhardt 2019). It is possible to visualize smaller sets of trajectories as collective individual lines, 
though large and complex movement data become visually overwhelming and visualization alone is 
insufficient for making inferences about movement behaviors or patterns (Andrienko et al. 2007). 
While the problem of large data volumes and overwhelming visual displays has been addressed by 
work in visual analytics, dashboards for mobility analytics require additional consideration in 
developing at-a-glance views that highlight relevant mobility results. This challenge requires a clear 
framework for guiding the design and implementation of the mobility-analytics-oriented dashboards. 
It also needs novel aggregation visualization methods, such as the methods in Section 6.3.1. to support 
technical solutions. 

 

4 Evaluating visual analytics procedures through eye-tracking 

Eye tracking is the process of measuring and recording individual’s gaze positions and eye movements. 
This technology is being increasingly used not only in psychology and product design but also in 
visualization and human-computer interaction sciences for evaluation of visual displays and user 
interfaces. Researchers employ eye tracking to understand how their designs are actually used and, 
possibly, even get insights into users’ ways of reasoning and problem solving. In evaluating one design, 
researchers want to check if users’ behaviours correspond to the supposed ways of use, see where the 
users may have difficulties, and understand how the design can be improved. In evaluating two or 
more alternative designs, researchers want to know not only which design is better in terms of task 
completion times and error rates but also why it is better: How does the use of this design differ from 
the use of the others? What is more difficult, confusing, or inconvenient in the other designs? 

Eye tracking produces large amounts of data that are quite hard to analyse. The standard tools and 
methods for analysis of these data have rather limited capabilities. They can show where the users 
look first and where they look most and can compute basic measures (fixation count, time to the first 
fixation, statistics of the fixation durations and saccade lengths, etc.). However, these methods are 
hardly suitable for studying the spatio-temporal structure of eye scan paths, in particular, how the 
movements change over time while the user carries out a given task. For these purposes, we adopt 
movement analysis methods (see Andrienko et al. 2012). 

 Eye tracking vs. geographic movement data 

Eye tracking data consist of records about the positions and times of gaze fixations. Each record 
includes the following components: user identifier, time, position in the display space (x- and y-
coordinates), and fixation duration. The records may also include other attributes, e.g., stimulus 
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identifier when different stimuli are used in the data collection. The temporally ordered sequence of 
records of one user referring to one stimulus is further called eye trajectory or scanpath, as in the 
literature on eye tracking. 

Geographical movement data have the same structure: moving object identifier, time, and position (in 
geographical space) defined by coordinates; additional attributes may also be present. The structural 
similarity suggests that both classes of data may be analyzed using the same methods. However, there 
is a significant difference between eye movements and movements of physical objects governed by 
inertia: eye movements include instantaneous jumps (saccades) over relatively long distances (Dodge 
et al. 2009). The intermediate points between the start and end positions of a jump are not meaningful; 
it cannot be assumed that there exists a straight or curved line between two fixation positions such 
that the eye focus travels along it attending all intermediate points. This prohibits the use of methods 
involving interpolation between positions, as in creating movement density surfaces (Willems et al. 
2009). Hence, not all movement analysis methods are valid for eye trajectories. 

Another concern is whether the tasks for which a method was developed are relevant to eye 
movement analysis. For example, the methods intended to analyze collective simultaneous 
movements of multiple objects can hardly be useful in analyzing eye trajectories since simultaneous 
eye movements of two or more users viewing the same image are usually not tracked. Even if such 
data were collected, the eye foci of different users are unlikely to interact in the screen space similarly 
to interactions of material moving objects. Hence, not all movement analysis methods are meaningful 
for eye trajectories. 

 Analytical tasks in eye tracking studies 

We use the term ‘analytical task’ to denote possible interests of eye movement analysts, i.e., the 
questions they may seek to answer. The possible types of tasks have been in part extracted and 
generalized from the eye tracking-related literature and in part generated during the study, when the 
evaluation group posed their questions and the technology group, from their side, applied the 
methods to the data and looked what could be learned. 

The possible tasks can be divided into two major categories: tasks focusing on areas of interest (AOIs) 
and tasks focusing on movements. The first category deals with the distribution of the user’s attention 
over a display. It can be subdivided into several task types according to the following aspects: 

- whether the AOIs are predefined (e.g., certain targets the users are supposed to search for) 
or need to be extracted from the data (e.g., elements/parts of an image attracting more 
attention); 

- whether the evolution of the attention over time is of interest; 
- whether the analyst needs general results for the entire set of users or looks for essential 

differences between individuals or groups (e.g., experts versus novices); 
- whether the study is focused on a single display or compares two or more displays. 

Common for these tasks is that only the fixations are analyzed and not the saccades or transitions 
between the AOIs. For example, Çöltekin et al. (2009) compare two interfaces by analyzing fixation 
durations and fixation counts for predefined AOIs.  

In the second task category, the movements are of primary interest. AOIs are important, but the focus 
is on transitions between them and their temporal order. Analysts want to discover the users’ 
strategies in visual exploration, search, and performing given tasks. They also want to understand 
whether and where the users have difficulties. Movement-focused tasks are indispensable in 
evaluation of information displays and user interfaces. This task category can be subdivided as follows: 

- Examine the general characteristics of the movements, e.g., prevalence of long or short 
movements, presence of sharp turns, path complexity, etc. 
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- Examine the spatial patterns of the movements, e.g., jumps across large areas or gradual 
scanning, spatial clustering or dispersion, radial or circular moves, etc. 

- Study the relation of the movements to the display content and/or structure, e.g., 
correspondence to the arrangement of the display elements, movements along available lines 
or figure boundaries, connections and transitions between the AOIs, etc. 

- Understand individual viewing or searching strategies, compare to expected or theoretically 
optimal strategies. 

- Understand general viewing or searching strategies of multiple users, find and interpret 
different types of activities. 

- Find typical paths, e.g., as frequent sequences of attended AOIs. 
- Detect and investigate indications of possible users’ difficulties: returns to previous points, 

repeated movements, and cyclic scanning behaviours. 

Like the AOI-focused tasks, the movement-focused tasks can be additionally classified according to the 
following aspects: 

- whether the evolution of the eye movements over time is of interest; 
- whether different users or groups are compared; 
- whether different displays are compared. 

Analysis of eye tracking data usually involves many tasks, which may require several analysis methods. 
The next section briefly reviews the methods that have been previously applied to eye tracking data. 
It shows that AOI-focused tasks are better supported by the standard methods than movement-
focused tasks, which are therefore will be given more attention in our project. 

 Methods 

There are many statistical metrics that can be derived from eye tracking data. Poole and Ball (2006) 
systemize these metrics and their possible interpretations. For example, high saccade/fixation ratio 
indicates more processing, large saccade amplitudes indicate more meaningful cues (as attention is 
drawn from a distance), etc. However, eye movements cannot be fully understood just from those 
numbers. Visual analysis is essential for further insight. 

The most popular tool to visually analyze eye tracking data is the attention heatmap (Bojko, 2009) 
showing the distribution of users’ attention over the display space. Heatmaps can be easily generated 
using standard eye tracking software. They can visualize counts of fixations, counts of different users 
who fixated on different areas, absolute gaze duration, and relative gaze duration (percentage to the 
total time spent). Attention heatmaps may be useful for AOI-focused tasks. In comparative studies 
(different time intervals, different users, or different images) several heatmaps are compared. Eye 
tracking analysts also try to determine users’ search strategies by analyzing series of heatmaps 
generated for consecutive time intervals (Poole & Ball, 2006), which show how the users’ attention 
foci change over time. However, the characteristics of the eye movements, the links between the 
attention foci, and the paths followed during the search remain unclear. 

Another visualization technique provided by standard software is the gaze plot, which represents 
fixations by circles with sizes proportional to the fixation durations and connects consecutive fixations 
by lines. Eye movement analysts usually admit that this method is not suitable for large data due to 
enormous overplotting (Çöltekin et al. 2010). 

A common method suitable for movement-focused tasks is scanpath comparison (Duchowski et al. 
2010) based on computing the degree of dissimilarity between two scanpaths. The latter are 
represented as strings where the symbols designate the AOIs and are arranged in the order of 
attending the AOIs; then a distance function based on string editing is used (Duchowski et al. 2010). 
The function computes the cost of transforming one string into another by means of deletions, 
insertions, and substitutions. This can be extended to account for the fixation durations and distances 
between the AOIs (von der Malsburg & Vasishth, 2011). In analyzing multiple scanpaths, pairwise 
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distances may be averaged (Duchowski et al. 2010) or used to cluster the paths by similarity (Çöltekin 
et al. 2010). The matrix of pairwise distances can be fed to a projection algorithm, e.g., 
multidimensional scaling, and the projection can be visualized (Çöltekin et al. 2010) for finding groups 
of similar scanpaths.  

Opach and Nossum (2011) admit that scanpath comparison may be ineffective in case of large variance 
among eye trajectories. The authors even conclude that the method requires the visual stimuli to be 
specially designed to minimize the possibilities of different viewing strategies. Thus, this method works 
well enough in text reading studies (von der Malsburg & Vasishth, 2011) and psychological tests 
(Duchowski et al. 2010) where the AOIs (words, numbers, letters, etc.) are predefined and supposed 
to be viewed in a particular order. Çöltekin et al. (2010) represent scanpaths in a generalized way: the 
possible AOIs are assigned to classes according to their semantics or function; the scanpaths are 
transformed to sequences of class labels and thereby become more comparable; the analysis is based 
on these sequences. 

The scanpath comparison methodology does not provide a way to see the original scanpaths. The 
analyst has to deal with the strings, which may be not easy to understand, especially when the symbols 
represent automatically extracted AOIs and therefore lack semantics. Çöltekin and Kraak (2010) 
suggest that the space-time cube (STC) (Kraak, 2003) can be used to visualize eye trajectories. It is good 
for detailed exploration of a single trajectory and even for multiple trajectories when there is not much 
diversity among them (Çöltekin and Kraak, 2010). Eye trajectories have also been analyzed using the 
movement summarization method originally developed for geographic data (Fabrikant et al. 2008; 
Ooms et al. 2012). The successful uses of this method and STC show that geographic movement 
analysis methods can also be useful in eye movement analysis. Within the project, we are going to 
perform a systematic investigation of the potential of these and other techniques for eye movement 
studies. 
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