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SoA – Big Data Analytics 
 

This section first explains knowledge discovery in big data. Several topics and techniques are discussed. 
For each case, research papers covering both moderately sized datasets as well as big data are 
discussed. First, we discuss trajectory 'clustering' for a given time period and then consider the 
problem to discover groups of objects moving together. Next, we focus on sequential pattern mining. 
Pattern growth algorithms are less computationally expensive the Apriori- based algorithms and better 
suited to be transformed to versions that allow big data being processed in parallel taking advantage 
of the MapReduce model. Hot spot analysis discretizes space-time and identifies cells for which a 
particular attribute takes a statistically significant value. In the mobility domain, the number of moving 
objects in a space-time cell can be counted and analyzed using the classical Getis-Ord statistic. Ongoing 
and recent research on finding hot spots in big data is discussed. Future location prediction takes a 
history of movements (visited location sequences) and tries to predict the sequence of visited locations 
for a given time horizon. 'Pattern-based prediction' is based on the history of sets of moving objects 
(as opposed to individual histories). We discuss several ways to represent the mined patterns. 
Predicting object movements on a network from streaming data is of high importance to mobility 
science (travel guidance). Location prediction is extended to 'Trajectory prediction': most related 
research applies to aircraft movements and is not network bound. Current challenges include the 
adaptation of the methods discussed for use on big data. Beyond that, the recent concept of predictive 
queries applied to network bound movements deserves attention because of its relevance to travel 
guidance. Finally, data may not be available for specific regions. Hence, 'transfer learning' comes into 
play when trying to apply models and model parameters sets in regions different from where they 
were mined. This is a particularly challenging topic for complex phenomena like urban mobility 
because they depend on spatially dependent habits. 

What follows is a review of methods on complex network analytics. The use of complex networks is 
briefly introduced and examples from community detection and (information) diffusion are presented. 
Sample real world problems show the need to study network topology dynamics. Mobility data 
includes several relations which leads graph theoretical and complex network problem formulations. 
The example of Individual Mobility Networks (IMN) that can be mined from big data is explained in 
detail. 

This chapter concludes with a discussion on Complex Event Recognition (CER) techniques. CER or event 
pattern matching applies to continuous data flows origination from several sources. Tools and 
methods to define and represent complex events are discussed along the processes leading to CER. 
Main research topics are: event pattern specification, uncertainty handling, the challenges posed by 
CER in big data streams and techniques for both supervised and unsupervised learning of event 
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patterns. Finally, the importance of CER in big data is illustrated for mobility data (both road based and 
maritime). 

 

1 Knowledge Discovery in Big Data  

In this section, several issues related to knowledge discovery in Big Data analytics are discussed. 
Specifically, related works and state-of-the-art are presented for the core tasks of clustering, 
sequential pattern mining, future location prediction and trajectory prediction. Additionally, a short 
literature review is presented for other related tasks and methods, including predictive query 
processing and transfer learning with mobility data analytics. 

 

 Clustering 

Location aware devices, such as mobile phones, tablets and automobiles carry numerous networked 
sensors, which create huge amounts of data that represent some kind of mobility. In addition, the 
massive participation of individuals on location based social networks will continue to fuel exponential 
growth in the production of this kind of data. This enormous volume of data has posed new challenges 
in the world of mobility data management in terms of storing, querying, analyzing and extracting 
knowledge out of them in an efficient way.  

One of these challenges is cluster analysis. The typical approach is to either transform trajectories to 
vector data, in order for well-known clustering algorithms to be applicable, or to define appropriate 
trajectory similarity functions, which is the basic building block of every clustering approach. For 
instance, CenTR-IFCM (Pelekis et al. 2014) builds upon a Fuzzy C-Means variant to perform a kind of 
time-focused local clustering using a region growing technique under similarity and density 
constraints. For each time period, the algorithm determines an initial seed region (that corresponds to 
the sub-trajectory restricted inside the period) and searches for the maximum region that is composed 
of all sub-trajectories that are similar with respect to a distance threshold d and dense with respect to 
a density threshold θ. Subsequently, the growing process begins and the algorithm tries to find the 
next region to extend among the most similar sub-trajectories. The algorithm continues until no more 
growing can be applied, appending in each repetition the temporally local centroid. In the same line 
of research, having defined an effective similarity metric, TOPTICS (Nanni et al. 2006) adapts OPTICS 
(Ankerst et al. 1999) to enable whole-trajectory clustering (i.e. clustering the entire trajectories), 
TRACLUS (Lee et al. 2007) exploits on DBSCAN (Ester et al. 1996) to support sub-trajectory clustering, 
while T-Sampling (Panagiotakis et al. 2012, Pelekis et al. 2010), introduces trajectory segmentation 
(aiming at temporal-constrained sub-trajectory clustering (Pelekis et al. 2017), by taking into account 
the neighborhood of a trajectory in the rest of the dataset, yielding a segmentation that is related only 
on the number of neighboring segments that vote for the line segments of a trajectory as the most 
representatives. All the above trajectory clustering approaches they are capable of identifying 
trajectory clusters and their densities but do not tackle the issue of statistical significance in the space-
time they take place. 

A branch of related works aim to discover several types of collective behavior among moving objects, 
forming a group of objects that moves together for a certain time period. Among the most related to 
this work, in (Laube et al. 2005a; Laube et al. 2005b), the authors define various mobility behaviors 
around the idea of the flock pattern, such as the meeting, convergence and encounter patterns. The 
discovery of a meeting in a time interval I of at least k timepoints, consists of at least m objects that 
stay within a stationary disk of radius r during I. There are two variants of meetings: either the same 
m entities stay together during the entire interval (fixed-meeting), or the entities in the meeting region 
may change during the interval (varying meeting). On the other hand, the convergence pattern 
describes trajectories that converge to the same location, coming not necessarily from the same origin. 
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Inspired by this idea, the notion of a moving cluster was introduced in (Kalnis et al. 2005), which is a 
sequence of clusters {c1, …, ck}, such that for each timestamp i, ci and ci+1 share a sufficient number of 
common objects. There are several related works that emanated from the above ideas, like the 
approaches of convoys, swarms, platoons, traveling companion, gathering pattern (Zheng et al. 2015). 
There are several other methods that try to identify frequent (thus, dense) trajectory patterns. In case 
where moving objects move under the restrictions of a transportation network, (Sacharidis et al. 2008) 
proposed an online approach to discover and maintain hot motions paths while (Chen et al. 2011) 
tackled the problem of discovering the most popular route between two locations based on the 
historical behaviour of travellers. In case where objects move without constraints, (Cao et al. 2006) 
proposed a method to discover collocation patterns. 

However, all of the aforementioned approaches are centralized and in order to meet with the 
challenges posed in the Big Data Era, one should think beyond the centralized paradigm and start 
examining how solutions to such problems could be implemented in a way that would meet with these 
challenges. A line of research is to adapt well-known solutions to trajectory datasets. In this context, 
(Deng et al. 2015) introduces a scalable GPU-based trajectory clustering approach which is based on a 
scalable density-based clustering approach for point data (POPTICS) (Patwary et al. 2013). As to finding 
flock patterns in large trajectory databases, (Valladares et al. 2013) presented a GPU-based approach 
for finding extremal sets within a family F of k finite sets, which has no restrictions on the input. (Fort 
et al. 2014) studied the problem of finding flock patterns in trajectory databases and presented some 
parallel algorithms based on GPU for reporting all maximal flocks, the largest flock and the longest 
flock. Moreover, (Jinno et al. 2012) attempts to discover frequent movement patterns from the 
trajectories of moving objects. More specifically, they propose a MapReduce-based approach to 
trajectory pattern mining using a hierarchical grid with quadtree search in order to identify complex 
patterns involving different levels of granularity.  

 (Moussalli et al. 2015) and (Moussalli et al. 2013) presented FPGA- and GPU-based solutions for 
parallel matching of variable-enhanced complex patterns by stream-mode (single pass) filtering. Both 
implementations are able to process the trajectory data in a single pass when handing pattern queries 
with no more than one variable or no wildcards with two or more variables but result in false positive 
matches when two or more variable occur in a pattern query alongside wildcards. The parallel 
solutions can outperform the current state-of-the-art CPU-based approaches by two or three orders 
of magnitude at certain circumstances and shows very good scalability with regard to pattern 
complexity. Similarly, in (Lan et al. 2017) a streaming environment is assumed, however, here, a new 
concept is proposed, that of evolving group pattern that captures the interesting group patterns over 
streaming trajectories that cannot be captured by the current group pattern detection techniques.  

An approach that defines a new generalized mobility pattern is presented in (Fan et al. 2016). In more 
detail, the general co-movement pattern (GCMP), is proposed, which models various co-movement 
patterns in a unified way and can avoid the loose-connection anomaly. Further, the GCMP detector is 
deployed on a modern MapReduce platform (i.e., Apache Spark) to tackle the scalability issue. On the 
other hand, in (Ding et al. 2018) an efficient and flexible platform for an open-ended range of trajectory 
data management and analytics techniques, called UlTraMan, is proposed. Within this system, the 
GCMP detector is implemented. Moreover, all the necessary preprocessing tasks that are not covered 
in (Fan et al. 2016) can be supported efficiently in UlTraMan, hence avoiding unnecessary data transfer. 

 

 Sequential Pattern Mining 

Sequential pattern mining discovers subsequences that appear in a sequence database with frequency 
no less than a user-specified threshold. A sequence database stores a number of records, where all 
records are ordered sequences of events, with or without concrete notions of time. Sequential pattern 
mining is an important data mining problem with broad applications, such as mining customer 
purchase patterns, identifying outer membrane proteins, automatically detecting erroneous 
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sentences, discovering block correlations in storage systems, identifying copy-paste and related bugs 
in large-scale software code, API specification mining and API usage mining from open source 
repositories, and Web log data mining.  

This problem was defined as follows: Given a set of sequences, where each sequence consists of a list 
of elements and each element consists of a set of items, and given a user-specified min_support 
threshold, sequential pattern mining is to find all frequent subsequences, i.e., the subsequences whose 
occurrence frequency in the set of sequences is no less than min_support (Agrawal et al. 2014). 

Generally, sequential pattern mining algorithms can be categorized into two major classes: Apriori-
based approaches and pattern growth algorithms. The first class of algorithms (i.e., Apriori-based 
approaches) form the vast majority of algorithms proposed in the literature for sequential pattern 
mining. They depend mainly on the Apriori property, which states the fact that any super-pattern of 
an infrequent pattern cannot be frequent and are based on a candidate generation and- test paradigm 
proposed in association rule mining (Agrawal et al. 1993). These methods have the disadvantage of 
repeatedly generating an explosive number of candidate sequences and scanning the database to 
maintain the support count information for these sequences during each iteration of the algorithm, 
which makes them computationally expensive. 

To alleviate these problems, pattern growth approach for efficient sequential pattern mining adopts a 
divide-and-conquer, pattern growth paradigm as follows, sequence databases are recursively 
projected into a set of smaller projected databases based on the current sequential pattern(s), and 
sequential patterns are grown in each projected database by exploring only locally frequent fragments 
(Han et al. 2000). The frequent pattern growth paradigm removes the need for the candidate 
generation and prune steps that occur in the Apriori-based algorithms and repeatedly narrows the 
search space by dividing a sequence database into a set of smaller projected databases, which are 
mined separately. 

In the era of Big Data, where huge amounts of data are available, algorithm and implementation of 
sequential pattern mining has to re-designed and re-implemented under a distributed computing 
framework as traditional approaches are not designed to handle massive amounts of data. In recent 
years research has been done for finding sequential patterns in parallel and distributed areas like 
Hadoop, Grid, Cloud, etc. 

In Parallel Transaction Decomposed Sequential Pattern Mining (PTDS) (Wang et al. 2010) transactions 
are decomposed to mine the sequential patterns and pattern growth approach is greatly accelerated 
to improve the efficiency of large-scale data. First, PTDS sorts the sequences and plan the sequences 
with identical or similar prefix, which is considered as first transaction of each sequence. The input 
sequence is split in to two parts one is the first transaction and other is the remaining part of 
transaction in the sequence. PTDS collects sequences with equal prefix, decompose the prefix and 
applies serial sequential pattern mining method on the set of subsequences; each one contains the 
remaining transactions of the raw sequence, and finally merges the mining results together. PTDS is 
implemented using MapReduce framework on Apache Hadoop environment which greatly accelerate 
pattern growth approach and improves the performance and efficiency of parallel sequential pattern 
algorithm on large scale data. 

Following collaborative pattern mining for distributed information system (CLAP) (Zhu et al. 2011), 
mining of data is divided into three parts: first, identify locally important patterns on individual 
database; second, determine major patterns after combining distributed database into single view; 
third, find patterns which follow special relationship across different data collection. This algorithm 
makes use of pattern mining for query processing to satisfy user specified query constraints to discover 
patterns from distributed databases. In existing system pattern pruning is based on single database, 
so to solve this problem cross-database pruning concept is used for distributed sequential pattern 
mining. CLAP encourage pattern discovery in distributed approach where each distributed site carries 
pattern pruning in collaboration with its peers by employing bloom filter-based pattern switching 
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mechanism. A bloom filter is space efficient data structure which contains k hash functions, and binary 
array of m bits. Patterns like x1,x2,…,xn can be added into the bloom filter to check whether pattern 
exist in bloom filter or not by using all k hash functions to map xt to k positions. CLAP system consists 
of mainly two parts as one construction of FP-tree and bloom filter for each local site and second CLAP 
cross database pruning and pattern growth. CLAP only focuses on frequent itemset mining. 

Recently, many applications are moved to cloud infrastructure. Sequential pattern mining on cloud 
(SPAMC) (Chen et al. 2013) adapts is developed for mining sequential patterns on MapReduce model 
on cloud. SPAMC is a cloud-based version of sequential pattern mining algorithm consisting of two 
phases: scanning phase, and mining phase. In the scanning phase, high performance is achieved by 
distributing tasks on multiple computers by using MapReduce programming model to proceed in 
parallel by distributing sub-tasks to independent machines. Each mapper scans and transforms a 
partitioned database, and reducers are used to count the frequency of each item and eliminate 
infrequent items. The bitmap information of frequent items will be stored into a distributed hash table 
(DHT) that can be accessed in the mining phase. After that, in the mining phase, the sequential pattern 
mining tasks are processed in parallel by distributed machines. Main task of the mining phase is to 
construct the complete lexical sequence tree, and then all patterns can be derived. Additionally, to 
achieve better load balancing, depth first search strategy is used to bring out the steps of sequence 
and itemset extension with limited sub-tree depth. This strategy effectively improves the situation like 
mapper may stand and wait for a long time. In such a context, each MapReduce round will complete 
two levels of lexical sequence sub tree construction. On the other side, reducers efficiently integrate 
output results from mappers and do the support counting to generate frequent sequential patterns of 
the current sub-tree. 

 

 Hot-spot Analysis 

The data wealth, produced by the proliferation of GPS technology, the widespread adoption of 
smartphones, social networking, as well as the ubiquitous nature of monitoring systems, contributes 
to the ever-increasing size of what is recently known as Big spatial (or spatio-temporal) data (Eldawy 
et al. 2016), a specialized category of Big data focusing on mobile objects. Analyzing spatio-temporal 
data has the potential to discover hidden patterns or result in non-trivial insights, especially when its 
immense volume is considered. To this end, specialized parallel data processing frameworks (Alarabi 
et al. 2017a, Alarabi et al. 2017b, Hagedorn et al. 2017, Tang et al. 2016) and algorithms (Doulkeridis 
et al. 2017, Fang et al. 2016, Whitman et al. 2017, Xian et al. 2016) have been recently developed 
aiming at spatial and spatio-temporal data management at scale. 

In this context, a useful data analysis task is Hot spot analysis, which is the process of identifying 
statistically significant clusters. However, there is practically no work on hot spot analysis for Big 
trajectory data. One of the main challenges is focused on discovering hot spots in the maritime domain, 
as this relates to significant challenging use-case scenarios (Claramunt et al. 2017), such as identifying 
different types of activities in a region of interest, estimating fishing pressure, environmental 
fingerprint, etc. Similarly, in the aviation domain the predicted presence of a number of aircrafts above 
a certain threshold results in regulations in air traffic, while in the urban domain such a presence 
accompanied with low speed patterns implies traffic congestions. Thus, the effective discovery of such 
diverse types of hot spots is of critical importance for our ability to comprehend the various domains 
of mobility. 

Hot Spot discovery and analysis is usually based on spatio-temporal partitioning of the 3D data space 
in cells. The identification of cells that constitute hot spots includes having high concentration of 
mobile objects and in statistically significant densities. One of these methods is the Getis-Ord statistic 
(Ord et al. 1995), a popular metric for hot spot analysis, which produces z-scores and p-values. A cell 
is considered as a hot spot if it is associated with high z-score and low p-value. Unfortunately, the 
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Getis-Ord statistic is typically applicable in the case of 2-D spatial data, and even though it can be 
extended to the 3-D case, it has been designed for point data. 

The problem of Trajectory hot spot analysis can be formulated by taking into account the contribution 
of a moving object’s trajectory to a cell’s density, which is proportional to the time spent by the moving 
object in the cell. To this end, the Getid-Ord statistic can be adapted (Nikitopoulos et al. 2018) to 
capture this approach for the case of trajectory data and the algorithm can be designed for parallel 
and scalable processing for computing hot spots in terms of spatio-temporal cells produced by grid-
based partitioning of the data space under consideration. 

Similar approaches can be adapted and applied in the urban environment, especially designed for Big 
mobility data. Hot spot analysis will be a very important aspect of detecting points of high density, 
bottlenecks and points of interest, which can be combined with efficient identification of mobility 
patterns. 

 

 Future Location Prediction 

The problem of Future Location Prediction (FLP) can be informally described as follows: Given the 
recent spatio-temporal history of N previous data points of a moving object, i.e., consisting of its time-
stamped locations recorded at N past time instances, and an integer look-ahead value L, predict the 
anticipated future locations of the object for the next L time instances. The main factors for any FLP 
algorithm are size of the history (N), the extent of the prediction window (L) and the way these two 
are combined together in a predictive model. 

The FLP problem finds two broad categories of application scenarios. The first scenario involves cases 
where the moving entities are traced in real-time to produce analytics and compute short-term 
predictions, which are time-critical and need immediate response. Short-term FLP can be extremely 
important in domains where safety, adaptiveness and responsiveness out outmost importance and a 
decision-making process. The second scenario involves cases where long-term FLP is important to 
identify cases which exceed regular mobility patterns, detect anomalies, and determine a position or 
a sequence of positions of special interest at a given time interval in the future. In this case, although 
response time may not be a critical factor per se, it is still crucial in order to identify correlations 
between historical mobility patterns and patterns that are expected to appear, e.g. approach to a 
restricted area.  

There are two main directions when dealing with the FLP problem: (a) vector-based prediction or the 
the spatial database management approach and (b) pattern-based prediction or the data mining & 
Machine Learning approach. Each has its own advantages and drawbacks and, most importantly, it is 
based on different assumptions regarding the data and their organization used as the input.  

The vector-based approaches, inspired by the spatial database management domain, aim to model 
current locations (and perhaps a short history) of objects as motion functions, in order to be able to 
predict future locations by some kind of extrapolation. In practice, they take into consideration space 
and time and predict future locations of moving objects within a given time interval using a 
mathematical or probabilistic model, which aims to simulate the anticipated movement. First- or 
second-degree physics models of movement are commonly used, employing extrapolation with 
velocity or velocity and acceleration components, respectively, to estimate the evolution of 
movement, provided that these can be assumed to be constant in a short-term look-ahead time 
window. 
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Figure 1: The future position of a moving object as the result of a linear motion function. 

The constant-speed assumption is also very useful in the development of proper transformations of 
the input space that enable time-invariant representations, e.g. via the Hough-X transform (Jagadish 
et al. 1990). Essentially, the evolving position of a moving object remains a stationary point in dual 
space as soon as it does not change its velocity vector, thus it can be efficiently indexed in a spatial 
access method. This is the main concept behind the family of predictive query processing techniques 
for FLP that introduces various state-of-the-art methods including PMR Quadtree (Tayeb et al. 1998; 
Samet 1990), TPR*-tree (Tao et al. 2003), Bx-tree (Jensen et al. 2004) and STP-tree (Tao et al. 2004). 

The pattern-based approaches, inspired by the spatial data mining domain, identify and exploit motion 
patterns by analyzing historic data of moving objects, i.e., classification models, repetitive patterns, 
clusters of “similar” movements, etc, based upon a history of movements. An important difference 
with respect to the vector-based approaches is that in this case the models are built upon the history 
of movements, not only of the object of interest, but also of the other objects moving in the same 
area; therefore, they are able to build better models and use them for addressing the FLP task in a 
more generic and data-driven way. Particularly, extensive surveys on vehicle motion prediction models 
have been presented by (Lef`evre et. al. 2014) and (Zhan et. al. 2018) 

Techniques based on Hidden Markov Models (HMM), Neural Networks (NN) and other data-driven 
approaches have been extensively used to address the FLP problem. (Ishikawa et al. 2004) introduce 
an algorithm that extracts mobility statistics from indexed spatio-temporal datasets for interactive 
analysis of huge collections of moving object trajectories. In the maritime domain, (Zorbas et al. 2015) 
introduce a machine learning model using a NN that exploits geospatial time-series surveillance data 
generated by sea-vessels, in order to predict future trajectories with real-time constraints with a look-
ahead time window of 5 minutes. In a different domain, that of aviation, (Hamed et al. 2013) propose 
a method for predicting the altitude change of an aircraft within a predefined look-ahead time window 
of 10 minutes. Also, (Pecher et. al. 2016) employed various methods, including NNs, to predict taxi-
drivers' trajectories, by dividing the road network into a two dimensional grid, while in (Choi et.al. 
2019) an RNN-based method for urban vehicle trajectory prediction is proposed, where the urban 
traffic network is partitioned into a grid area composed of cells. In the literature there are, also, works 
that correspond to short-term prediction. Particularly, in (Park et.al. 2018), (Kim et.al. 2017),  (Ma et.al. 
2019), (Hou et.al. 2019), (Altché et.al. 2017) and (Wu et.al. 2017), the employed maximum prediction 
horizons are 2sec, 2sec, 3sec, 5sec 10 sec and 90sec, respectively.  

Due to the advancement in the field of Deep Neural Networks (DNNs) there are works that employ 
DNNs to improve FLP. More specifically, (Wang et.al. 2019) proposed an LSTM model for trajectory 
prediction, which can first make a single-step prediction after one-hour of observation. Also, in (Fan 
et.al. 2018), the DLNLP was proposed, which predicts vehicle's next location given its trajectories and 
related contextual information. Furthermore, (Wang et.al. 2020) proposed a hybrid Encoder-Decoder 
DNN model in order to predict objects' future locations moving in free space.  

There are also pattern-based techniques that are based on association rules or frequent mobility 
patterns. These include methods like the Mobility Patterns (Yavas et al. 2005), TrajPattern algorithm 

(pi-1, ti-1) (pi, ti)

u
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for pattern groups (Yang et al. 2006), Spatio-Temporal Association Rules (STARs) (Verhein et al. 2006), 
WhereNext for trajectory patterns (T-patterns) (Monreale et al.2009), as well as state-of-the-art 
methods in this area like NextLocation (Gomes et al. 2013) and MyWay (Trasarti et al. 2017). 

There is also a relatively new category of semantic-aware approaches that involves semantics or 
enrichments extracted by the surrounding environment, e.g. stops, hot-spots, etc. Then, patterns are 
built upon this knowledge of enriched spatio-temporal data and then used for predicting the next 
location(s). As an example, (Ying et al. 2011) are the first who exploit both geographic and semantic 
features of trajectories. Their approach is based on a novel cluster-based prediction method, which 
estimates a mobile user's future location by exploiting frequent patterns in similar users' behavioral 
activities.  

In other works, a set of motion patterns is exploited for optimally designed `codebook' of motion 
functions that is used to fit the recent history of an object's movement and then extrapolate upon 
them within a specific look-ahead time window. Such an approach is the LeZi-Update adaptive on-line 
algorithm (Bhattacharya et al. 1999), incorporating dictionary updates as in the Lempel-Ziv algorithm 
family (Liv et al. 1978) for lossless compression.  

 

 Trajectory Prediction 

Typically, the trajectory of a moving object is defined as a sequence of spatio-temporal data points of 
length N, consisting of its time-stamped locations recorded at N past time instances, chronologically 
ordered. In principle, the spatial dimension D of the data points is arbitrary, but the most common 
cases are moving objects on a surface (D=2, e.g. maritime or land) and in a volume (D=3, e.g. aviation). 
Additionally, in order to simulate continuous movements, we usually make an assumption of 
interpolation in-between two consecutive data points; the most popular is linear interpolation, 
although other functions may be used as well (B-splines, etc.). 

Similarly to FLP, the Trajectory Prediction (TP) task can be informally described as follows: Given the 
recent history of S previous trajectories of one or more moving objects, i.e., each consisting of its time-
stamped data points recorded in the past, predict the anticipated future trajectory of the same or 
“similar” objects, based on some common reference initialization (e.g. starting point, time frame, 
region of interest, etc). The main factors for any TP algorithm are size of the history (N) and how it is 
exploited by a predictive model. 

In principle, the TP problem can be approached as a generalization of the FLP problem (Hamed et al. 
2013; Theodoridis et al. 2008; Zheng et al. 2015), which is the task of predicting the next spatio-
temporal position(s) of a moving object based on its previous track, most commonly in the short-term 
context (up to few minutes). On the other hand, the TP problem is to predict the anticipated track of 
the moving object given a set of constraints and/or historic data. A FLP method could be transformed 
to address the TP problem, given a specific granularity upon which the same method is applied 
iteratively. However, in that case the prediction errors are accumulated with each step (e.g. via multi-
step linear regression), thus making the next predicted points increasingly error-prone. In contrast, 
‘pure’ TP methods aim to forecast the trajectory itself from the start, thus making each predicted point 
equally error-prone. 

Recently, there has been plenty of work on location and trajectory prediction in the mobility (Pelekis 
et al. 2014). The proposed approaches include systems-engineering view (Sip et al. 2003) balancing TP 
accuracy and processing speed, stochastic approaches other than HMM, splitting the flight phases 
(Gong et al. 2004), collaborative TP via Conflict Avoidance & Resolution (CA&R) (Chen et al. 2011; 
Matsuno et al. 2015; Vouros et al. 2018), anomaly detection (Di Ciccio et al. 2016), etc. Not surprisingly, 
the vast majority of methods are domain-specific (with most of them in the aviation domain) and this 
is in order to take advantage of the properties of the moving objects under consideration. The issue of 
exploiting additional data or enrichments in TP have created the notion of semantic-aware TP or 
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Semantic Trajectory Prediction (STP), which enables better estimations for departure and arrival times 
and, hence, more robust scheduling and logistics, especially in the congestion points. 

During the last few years, there is a mainstream trend of using stochastic models for retrieval, with 
HMM approach being the most popular (Rabiner et al. 1989), as it has proved its efficiency in modeling 
a wide range of sequences of observations. In general terms, a system is assumed to have the 
Markovian property if its future situations depend only upon its current state. Exhibiting high accuracy 
in modeling sequential data, the HMM approach has given rise to a wide range of applications, such 
as speech recognition, music retrieval, human activity recognition, consumer pattern recognition, etc. 
Consequently, it is a clear opportunity to apply them in the domain of mobility data analysis. In the 
context of trajectory prediction, the flight route and all the associated information (weather, semantic 
data, etc), are usually encoded into discrete values that constitute the HMM states; then, the trajectory 
itself is treated as an evolution of transitions between these states, using the raw trajectory data of a 
large set of flights for training, plus spatio-temporal constraints (locality) to reduce the dimensionality 
of the problem. 

(Ayhan et al. 2016) introduce a novel stochastic approach to aircraft trajectory prediction problem, 
which exploits aircraft trajectories modeled in space and time by using a set of spatio-temporal data 
cubes. They represent airspace in 4-D joint data cubes consisting of aircraft’s motion parameters (i.e., 
latitude, longitude, altitude, and time) enriched by weather conditions. They use Viterbi algorithm 
(Viterbi 1967) to compute the most likely sequence of states derived by a HMM, which has been 
trained over historical surveillance and weather conditions data. The algorithm computes the maximal 
probability of the optimal state sequence, which is best aligned with the observation sequence of the 
aircraft trajectory. In their experimental study, they demonstrate that their methodology efficiently 
predicts aircraft trajectories by comparing the prediction results with the ground truth aligned 
trajectories, with the error being reasonably low for one-hour flights. 

Two of the most widely explored approaches in TP is regression and clustering, separately or in 
combination, some also exploring the use of weather or other data. These include methods based on 
Generalized Linear Model (GLM) (de Leege et al. 2013), multi-stage clustering (Yang et al. 2015), typical 
regression-based short/mid-term TP (Krumm et al. 2003; Tastambekov et al. 2014), combination of 
clustering and Kalman filters (Song et al. 2012), etc. Neural networks have also been used successfully 
for the climb/vertical TP (Le Fablec et al. 1999) or in relation to the air traffic flows (Cheng et al. 2003) 
for Estimated Time of Arrival (ETA). Recently, (Rathore et.al. 2019) proposed a scalable clustering and 
Markov chain based hybrid framework, called Traj-clusiVAT-based TP, for both short-term and long-
term trajectory prediction, which can handle a large number of overlapping trajectories in a dense 
road network. 

Regarding en route climb TP, one of the major aspects of ATM decision support tools, (Coppenbarger 
et al. 1999) discusses the exploitation of real-time aircraft data, such as aircraft state, aircraft 
performance, pilot intent and atmospheric data for improving ground-based TP. The problem of climb 
TP is also discussed in (Thipphavong et al. 2013) as it constitutes a very important challenge in ATM. In 
another work by (Ayhan et al. 2016), the authors investigate the applicability of the HMM for TP on 
only one phase of a flight, specifically the climb after takeoff. A stochastic approach such as the HMM 
can address the TP problem by taking environmental uncertainties into account and training a model 
using historical trajectory data along with weather observations. There are also numerical approaches 
to the problem of climb-phase TP, e.g. (Hadjaz et al. 2012). 

 

 Other Challenges 

As described in the previous sections, both FLP and TP problems have been studied extensively in the 
last few years. Some of the proposed approaches are compatible with Big data applications and some 
are not. Mobility data are in the core of various Big data modalities and approaches in addressing 
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analytics and predictive modelling tasks in a wide range of contexts. Thus, it is imperative that such 
approaches are scalable and parallelizable, in order to handle data of very large volume, velocity, 
veracity and variety.  

A more recent approach for addressing predictive modelling tasks via mobility patterns comes from 
the area of Predictive Queries (PQ) (Hendawi et al. 2012b, Zhang et al. 2012), which is one of the most 
exciting research topics in spatio-temporal data management. In many location-based services, 
including traffic management, ride sharing, targeted advertising, etc., there is a specific need to detect 
and track mobile entities within specific areas and within specific time frames. In Range Queries (RQ), 
the task is focused on identifying POIs and mobility patterns related to the current locations of moving 
objects. Instead, Predictive Range Queries (PRQ) address the same task but for future time frames. 
This is a typical use case in aviation, when one or more airplanes need to be checked in some spatial 
context in the future, e.g. for proximity (collision avoidance), scheduling (takeoff/landing), airspace 
sectorization (avoid overload and/or delays), etc. 

In the context of PRQ and most commonly in the RQ task, various approaches can be used for checking 
arrivals/departures of airplanes to/from specific regions of interest, including optimized k-nearest-
neighbour (k-nn) variants that employ spatio-temporal index trees. Similarly, a reverse k-nn query can 
be used to detect moving objects that are expected to have the query region as their nearest 
neighbour, e.g. for assigning moving objects to their “nearest” tracking node. Indexing can be 
implemented by very efficient data management structures, such as R-trees (time-parameterized, 
a.k.a. TPR/TPR*-trees), variants of B-trees, kd-trees, Quad-trees, etc (Hendawi et al. 2012b, Hendawi 
et al. 2015b). The predictive model itself can be linear or non-linear and it is most commonly based on 
historical data in the same spatio-temporal context, in the short- or the long-term w.r.t. time frame. 
The uncertainty of the prediction is addressed by either model-based approaches, which determine a 
representative model for the underlying mobility pattern, or pure data-driven approaches, which 
“learn” and index movements from historic data (Zhang et al. 2009). 

Another important aspect especially in FLP is the ability to employ such models in streaming data, i.e., 
using “live” sources of mobility data as they become available. This task can also be addressed by PRQ 
approaches, more specifically the continuous PRQ algorithms. The difference between a “snapshot” 
predictive query and a continuous one is that the second can be continuously re-evaluated with 
minimal overhead and optimal efficiency. As an example, the Panda system (Hendawi et al. 2012a, 
Hendawi et al. 2015b), designed to provide efficient support for predictive spatio-temporal queries, 
offers the necessary infrastructure to support a wide variety of predictive queries that include 
predictive spatio-temporal range, aggregate (number of objects), and k-nn queries, as well as 
continuous queries. The main idea of Panda is to monitor those space areas that are highly accessed 
using predictive queries. For such areas, Panda pre-computes the prediction of objects being in these 
areas beforehand. 

Similar approaches exist in various domains, such as the iRoad (Hendawi et al. 2013), which is 
employed for tracking vehicles in urban areas. More specifically, the system supports a variety of 
common PQs including point query, range query, k-nn query, aggregate query, etc. The iRoad is based 
on a novel tree structure named reachability tree, employed to determine the reachable nodes for a 
moving object within a specified future time T. By employing spatial-aware pruning techniques, iRoad 
is able to scale up to handle real road networks with millions of nodes and it can process heavy 
workloads on large numbers of moving objects. Since flight routes of civilian and cargo flights are also 
conditioned by various constraints, e.g. by submitted flight plans (aviation domain) or common ship 
routes (maritime domain), such road-based approaches can be adapted for a wide variety of problems 
(Jeung et al. 2010, Hendawi et al. 2015b). 

In the context of scalability and the Big data aspect, there are very recent and promising approaches 
such as the UITraMan (Ding et al. 2018), which addresses the scalability, the efficiency, the persistence 
and the extensibility of such frameworks. More specifically, it extends Apache Spark w.r.t. data storage 
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and computing by employing a key-value store and enhances the MapReduce paradigm to allow 
flexible optimizations based on random data access. Another approach for PQs in Big data is presented 
by Panda* (Hendawi et al. 2017), which is a scalable and generic enhancement of Panda (Hendawi et 
al. 2012a), applied to traffic management. More specifically, Panda* is a generic framework for 
supporting spatial PQs over moving objects, introducing prediction function when there is lack of 
historic data, isolation of the prediction calculation from the query processing and control over the 
trade-off between low latency responses and use of computational resources. For both UITraMan and 
Panda*, experimental results on large-scale real and synthetic data sets in other domains, which 
include comparisons with the state-of-the-art methods in this area, show promising results and hints 
of successful application to the aviation domain too. 

It should be noted that there are also other types of PQs, more advanced than the ones presented 
above, such as the predictive pattern queries (PPQ), which check conditions muc more complex than 
simple presence or not of a moving object within a specific spatio-temporal frame. Such advanced 
PPQs can be considered as a link between data management and data analytics, which can be very 
valuable in the context of the aviation domain. 

 

 Geographical Transfer Learning and Mobility Data 

Most machine learning and data mining methods work on the expectation that the context where the 
models and patterns were extracted is similar (i.e. has the same dependencies between variables) to 
the one where we want to deploy them. However, in several problems that is not the case, either 
because the samples in the two contexts are not homogeneous (e.g. the distributions of some variables 
are different) or because the data available in the second context is poorer. In such cases, transferring 
the knowledge from one context to the other can be challenging but also extremely useful, since would 
avoid the set-up of a completely new analysis process, including expensive data collection and 
labelling. This problem is called transfer learning, or knowledge transfer, and gained a large attention 
from the research community the latest years. 

Transfer learning has been deeply studied in the general context of machine learning (Pan and Yang 
2010, Tsung et al. 2017), yet transferring models across different geographical contexts has been only 
sparsely explored, especially in relation to human mobility.  

Some basic, geography-related example of knowledge transfer is given in (Wei, Zhang and Yang 2010), 
where mobility-based models for estimating air quality are transferred from a city where there exist 
sufficient multimodal mobility data and labels to cities with insufficient data. Similarly, (Liu at al. 2017) 
aim to identify the combinations of landscape metrics (inferred from satellite images) that correspond 
to the presence of urban villages. The technical issue, here, is that the relations between the two 
phenomena vary in space due to the presence of different geographical factors, and therefore the 
models must be adapted to the different contexts; 

A common problem is the geospatial transfer of models describing physical or social phenomena, such 
as house prices and seismic movements, across regions having different variable distributions or 
correlations, as studied in (Bussas et al. 2017). Similarly, the work by (Jun 2010) deals with the problem 
of classifying spatial data (specifically hyperspectral data) through spatially adaptive model parameters 
for Gaussian process models and presents various solutions to infer the parameters locally to each 
area. Finally, (Iddianozie and McArdle 2019) tackle the problem of learning to classify street types on 
a city and apply it to a different location. The provided methodology is based on statistical multi-
measures that allow to ascertain the spatial similarities of cities, making the prediction (based on 
random forest models) more robust and transferrable. 

The work in (Wang et al. 2017) considers a slightly different problem: how to transfer models from one 
set of mobility modes (taxis and buses) to a different one (ridesourcing cars, like Uber and similar 
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services), although in the same geographical area. The main problem, in this case, is to understand 
how to map (mobility) features across the different modalities.  

Finally, various works try to transfer models (i.e. model parameters) for various kinds of recognition 
tasks from one place to another one that might show slightly different conditions. An example on 
human activity recognition across different buildings is provided in (Kasteren et al. 2010). 

Despite the various examples discussed above, very little has been done so far on the transfer of 
complex models, such as trajectory patterns, mobility profiles or mobility forecasting models. This is a 
challenging and very promising direction of research that Track&Know will pursue. 

 

2 Complex Network Analysis in Big Data  

Complex Networks (Newman, 2003) are popular mathematical tools commonly used to describe and 
analyze interaction phenomena that occur in the real world. Social ties formation, economic 
transactions, face to face communications, the unfolding of human mobility are examples of events 
usually described by semantic rich Big Data often investigated using instruments borrowed from Graph 
Theory. Thanks to such heterogeneous analytical context, during the last decades several problems 
have been modeled and approached leveraging the framework offered by Complex Networks. Among 
the network related tasks addressed to extract meaningful information from real data, Community 
Discovery, Link Prediction, Spreading and Epidemic modeling are certainly the most famous ones.  

The concept of a “community” in a (web, social, technological, biological or informational) network is 
intuitively understood as a set of entities that have some latent factors in common with each other, 
and thus play a specific role in the overall function of the complex system (Fortunato, 2010). Traditional 
approaches to discover such mesoscale topologies assume that latent factors drive network 
connectivity; thus, finding sets of nodes with a high edge density among each other and a low edge 
density with the rest of the network effectively detects the functional modules of the network. 
Community discovery is then a network variant of data clustering, where proximity is replaced with 
edge connectivity. Communities are often used as a pre-processing step to enable complex analysis on 
top of network structures. For instance, they are often used to relate topological structures with 
external information – as in (Rossetti et al. 2016) where densely connected sets of 
Skype/Google+/Last.fm users were used to providing a characterization of the overall service usage. 

Since network topologies are expected to change as time goes by, forecast the appearance and 
vanishing of the entities (nodes as well as edges) composing them represents a crucial task to address. 
In this scenario, Link Prediction (Liben-Nowell et al. 2007, Lu et al. (2011)) focuses on the analysis of 
network historical data to provide insights on the future evolution of the network topology. Several 
Link prediction methodologies where proposed with the aim of identifying future friendships in social 
graphs (Jalili et al. 2017), collaborations in scientific/professional networks, interactions in protein-
protein networks as well as future co-locations of individuals (Wang et al. 2011). 

Generally, a dynamic process can describe not only graph topology perturbation but also the diffusion 
of some kind of content upon such complex structure. Commonly, when we use the word “spreading” 
we think to contagious diseases caused by biological pathogens, like influenza, measles or sexually 
transmitted diseases. However, a plethora of phenomena can be linked to the concept of epidemic: 
the spread of computer viruses (Szor 2004), the spread of mobile phone virus (Wang et al. 2013), the 
diffusion of knowledge, innovations, products in an online social network, etc. Several network models 
were designed to approach the complex task of modelling and forecasting diffusive phenomena, often 
leveraging data-driven analysis of real-world phenomena. As an example, in (Bakshy et al. 2012) the 
authors examine the role of information diffusion in the sharing habits of 235 million Facebook users. 
They study the role of weak and strong ties in information diffusion showing that the propagation of 
novel information is mostly due to the abundance of weak ties. The authors of (Leskovec et al. 2007) 
studied a corpora of weblogs (composed by 45,000 blogs and 2.2 million blog-posting) for two months. 
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In their paper, they show that blog posts do not have bursty behavior and that post popularity drops 
as a function of time. In (Cha et al. 2009) a Flickr dataset of 33 million photos marked as “favorite” 
from 2.5 million users of the service is analyzed. The authors observed that most of the markings do 
not spread widely throughout the network: even the more popular photos have limited popularity 
outside the immediate neighborhood of the original uploader.  

Indeed, both network topological dynamics – as the ones studied by Link Prediction approaches – and 
dynamics that occur on top of network structures are often interdependent. Such dualism has lead in 
recent years to the rising of the dynamic network analysis field (Holme et al. 2012). In a dynamic 
scenario, all the network problems defined and studied on top of static data are extended to allow a 
fine-grained time-aware analysis. Community Discovery, as an example, is revised to tracking network 
substructures as time goes by (Rossetti et al. 2018): such life-cycle analysis allows not only to profile 
group of entities involved in a networked structure but also to understand how their profile changes 
as the phenomenon the network describe evolves.  

The massive amount of mobility data available from different sources requires intensive analysis in 
order to extract useful models and patterns. The challenge is not only the computational aspect, but 
also the representation of this data in a meaningful and semantically rich way allowing classical and 
new methodologies algorithms to be applied. In particular the network (or, equivalently, graph) 
representation of this data gives a flexible way to define relations (edges) among basic concepts 
(nodes). In literature we can consider three different approaches considering what the nodes 
represent. 

The first class of works has the users as nodes (Hossmann et al. 2011; Wang et al. 2011), in both the 
cases the edges are weighted links representing the spatio-temporal co-location of them, i.e. the 
possible contacts, and the authors uses this graph to discover communities of users, connectivity 
measures and to predict future social ties.  

The second approach has user’s locations as nodes and the edges represent the trips between them 
(Gonzalez et al. 2002; Rinzivillo et al. 2014) – the link weight being proportional to the frequency of 
the trip. In this case the main analytical objectives are finding spatio-temporal regularities and patterns 
in user mobility or classify the purpose of the user’s visit. 

The third approach, the most used one, is to consider global locations as nodes. In this case, current 
analysis methods in the literature follow various different ways of defining edges between such nodes: 

- A link if there is an Infrastructure (e.g. streets, railways, etc.) connecting the locations; 
- A link if there is a collective service (i.e. taxi, bus, etc) connecting the locations; 
- Weighted links representing the number of users moving between the two locations. 

These different ways of building the graph are used for a large variety of analytical objectives, which 
include: trips simulation (Tian et al. 2002), evaluating the resilience of the road/transport network 
(Woolley-Meza et al. 2011) and simulating diseases spreading (Brockmann et al. 2009) for the first 
group; studying network and traffic evolution (Xia et al. 2018) and detecting traffic anomalies (Chawla 
et al. 2012) for the second group; inferring communities of locations (Brilhante et al. 2012), optimizing 
traffic (Zhang et al. 2018), comparing the structure of cities (Saberi et al. 2017), inferring new local 
borders within a country (Thiemann et al. 2010) and nowcasting air quality (Zheng et al. 2013) for the 
case of weighted links. 

From a global location perspective, a very popular task involving mobility and networks is the 
modelling and prediction of traffic flows between areas. The problem of estimating human flows 
between locations in a geographical space has been first addressed by (Wilson 1971) through a family 
of spatial interaction models and subsequently extended by (Fotheringham and O’Kelly 1989). Spatial 
interaction models, extensively used to estimate human mobility flows and trip demand between 
locations as a function of the location features, have become an acknowledged method for modelling 
geographical mobility in transportation planning (Erlander and Stewart 1990, de Dios Ortuzar and 
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Willumsen 2011), commuting (McArthur et al 2011), and spatial economics (Patuelli et al 2007). The 
spatial interaction models are usually calibrated via an Ordinary Least Squares (OLS) regression, which 
assumes normally distributed data. However, OD flows are usually not distributed normally, are count 
data, and contain a large number of zero flows. This makes the setting incompatible with OLS 
estimation and requires either a Poisson model or, in the presence of over-dispersion, a Negative 
Binomial Regression (NB) model (Zhang et al 2019). 

More recently, machine learning, particularly a Random Forest approach, has shown promising results 
in reconstructing inter-city OD flow matrices (Spadon et al 2019). However, its performance on intra-
urban flow data remains to be tested. The problem of estimating OD flows has also been addressed 
with neural network methods (Mussone and Matteucci 2013). As flows are most naturally modelled 
by graphs, most work has focused on the use of graph neural networks for flow estimation. An early 
neural network model for graph structured data has been suggested in (Scarselli et al 2009). Later work 
has specifically focused on generalising Convolutional Neural Networks from the domain of regular 
grids to the domain of irregular graphs (Defferrard, Bresson and Vandergheynst 2016). One of the most 
commonly used graph neural network models is the Graph Convolutional Neural Network (GCN) 
proposed in (Kipf and Welling 2017). Graph neural networks have previously been applied to urban 
planning tasks. In (Chai, Wang and Yang 2018), they have been used to predict the flow of bikes within 
a bike sharing system. Here, flows are modelled as node-level features, which requires a different 
neural network model and does not allow to predict flows between specific pairs of nodes. Although 
(Wang et al 2019) uses graph neural networks to predict flows between parts of a city, their model 
operates on spatio-temporal data and focuses on the temporal aspect of the data. Beyond flow 
prediction, in (Zhu and Liu 2018), a graph neural network model has been proposed for building site 
selection. A broader overview of machine learning methods applied to the task of urban flow 
prediction is given in (Xie et al 2019). 

A sample analysis framework of particular interest for the study of mobility at the level of single 
individuals is the work in (Rinzivillo et al. 2014), where the Individual Mobility Networks (IMNs) are 
defined. IMNs describe the individual mobility of an individual through a graph representation of her 
locations and movements, grasping the relevant properties of individual mobility and removing 
unnecessary details. Formally, the Individual Mobility Network of an individual u is a directed graph 
Gu = (V, E), where V is the set of nodes and E is the set of edges. On nodes and edges the following 
functions are defined: 

- ω : E → N returns the weight of an edge (i.e. the number of travels performed by u on that 
edge); 

- τ : V → N returns the time spent by the individual in a given location; 
- pe : E × T → [0, 1] estimates the probability pe (e, t) of observing an individual u moving on 

edge e at time t;       
- pl : V × T → [0, 1] estimates the probability pl(v, t) of observing an individual u at location v at 

time t. 

Nodes represent locations and edges represent movements between locations. We attach to both 
nodes and edges statistical information by means of structural annotations: edges provide information 
about the frequency of movements through the ω function; nodes provide an estimation of the time 
spent in each location through the τ function. To clarify the concept of IMN, let us consider the network 
in Figure X. It describes the IMN extracted from the mobility of an individual who visited 19 distinct 
locations. Location “a” has been visited a total of 18 time units (days in the example), i.e. τ(a) = 18. The 
edge e = (a, b) has weight ω(e) = ω(a, b) = 20, indicating that the individual moved twenty times from 
location a to location b. 
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Figure 2: The IMN extracted from the mobility of an individual. Edges represent the existence of a trip 

between two locations. Function ω(e) is the number of trips performed along edge e, τ(x) the total time 
spent in location “x”. 

In (Rinzivillo et al. 2014) the analytical objective is to build a classifier for the purpose of the visits of a 
user. This work demonstrated that abstracting the mobility data of the user from the geography 
provided a suitable representation layer for performing a classical data mining task to discover 
semantically rich models and patterns. Also, the work exploited the explicit relations encoded in each 
network, which allow, for instance, to propagate information from one node to the others (in the 
specific application, the activities performed in a location have an impact on the activities performed 
in adjacent [in terms of network topology] locations). 

 

3 Complex Event Recognition in Big Data 

Complex Event Recognition (CER) — event pattern matching — applications detect various events of 
interest in continuous, high-velocity data flows originating from a multitude of distributed sources, by 
timely providing responses to complex queries. CER plays an important role in Track & Know project, 
aiming to allow for real-time intelligence in the big data analytics toolbox that will be developed in the 
project. We review the state-of-the-art in CER with respect to key objectives related to research and 
development in Track & Know. We begin with an overview of the main CER languages and formalisms, 
including a brief description of representative systems for each such formalism and their ability to 
handle the variety of big data. We next discuss uncertainty handling in CER, crucial for addressing the 
lack of veracity of such streams and continue with important issues related to scaling CER systems to 
the volume and velocity of big data. We also present some existing techniques for machine learning 
event patterns from data and conclude with a discussion of CER approaches for mobility applications, 
which are highly relevant to Track & Know project. 

  

 Event Pattern Specification languages 

In principle, an event is any time-stamped piece of information. CER systems accept as input simple 
events, i.e. non-decomposable event occurrences, and they recognize complex events, i.e. event 
patterns of special significance, which are defined in terms of simple events and potentially other 
complex events and contextual knowledge. A variety of languages and formal methods for CER have 
been proposed in the literature - see (Artikis et al. 2012; Cugola and Margara 2012; Artikis et al. 2017) 
for overviews. Existing approaches have been developed within the database, distributed systems, and 
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artificial intelligence communities. They all have a common goal - express event patterns and match 
such patterns in the input data - but due to the diversity of their origins, they differ in their 
architectures, data models, pattern languages, and processing mechanisms.  

One family of CER systems relies on automata-based approaches. Event patterns in such systems are 
compiled into some form of automaton, such as non-deterministic finite automata (NFA) (Mozafari et 
al. 2013) or finite state machines (FSM) (Schultz-Møller, Migliavacca, and Pietzuch 2009). Such 
representations are used to provide the semantics of the event pattern language, as well as an 
execution framework for the event recognition task. Examples of such systems include Cayuga (Brenna 
et al. 2007), SASE (Mozafari et al. 2013), SASE+ (Zhang, Diao, and Immerman 2014) and TESLA (Cugola 
and Margara 2010). Some of these approaches use automata both as an event pattern specification 
formalism and as an execution framework for event recognition (Brenna et al. 2007; Mozafari et al. 
2013; Zhang, Diao, and Immerman 2014), while others use an ad-hoc event pattern specification 
language and then translate such patterns into an automata-based representation, which is eventually 
used for event recognition (Cugola and Margara 2010). Automata-based methods are well-suited for 
CER, since they are able to match event sequences in an input string, similarly to strings of characters 
recognized by regular automata. However, CER automata are more powerful than traditional finite 
state automata that recognize regular expressions, since they operate on rich event representations 
consisting of attributes, relations and constraints, they are capable of storing previously observed 
events in registers, to allow for temporal reasoning between events and they produce output rather 
than simply deciding whether a string is matched or not. 

Another family of CER systems relies on tree-based models. In a tree-based event pattern, leaf nodes 
in the tree represent event attributes and inner nodes represent event operators, where an operator 
node is parent to two or more attribute nodes or other operator nodes, thus defining a hierarchy of 
event operators. Event operators may include e.g. sequencing, negation, conjunction, disjunction, 
Kleene closure (iteration) etc. Realizations of such models for event pattern specification are ZStream 
(Mei and Madden 2009) and Esper1. The recognition process in tree-based systems is based on 
assigning buffers to all nodes in the tree. For leaf nodes, these buffers store the input events as they 
arrive, whereas the buffers of non-leaf nodes store intermediate results that are assembled from sub-
tree buffers. To perform even recognition, tree-based CER models start from the leaves of the tree 
where the input data are loaded, and they traverse the tree in a bottom-up fashion assembling match 
results based on the semantics of the event operators in the tree. 

A third family of CER systems are logic-based. They are characterized by a formal semantics expressed 
in some form of logic, in contrast to other types of CER systems that often present an informal or 
procedural semantics (Artikis et al. 2012). In some cases, logic-based CER systems encode rules using 
logic programming and use inference to detect complex events (Anicic et al. 2011). Prominent logic-
based approaches are based on chronicle recognition (Dousson and Maigat 2007) and the event 
calculus (Artikis, Sergot, and Paliouras 2015). Chronicle recognition relies on temporal logic and 
encodes event occurrences using logical predicates that define the time of occurrence and the content 
(attributes) of each event. Complex events are defined starting from primitive ones linked together 
with contextual and temporal constraints. Event calculus builds on fluents, which are properties that 
have different values at different points in time. In event calculus-based CER approaches, an event 
specification consists of rules that define the event occurrences, the effects of events, and the values 
of fluents. 

Logic-based approaches have a number of important advantages as compared to automata-based and 
tree-based formalisms. In addition to their formal declarative semantics, they also allow to express 
and reason with complex relations between events and utilize rich domain knowledge in the 
recognition process. On the other hand, non-logical CER approaches are in general more efficient than 

 
1 URL: http://www.espertech.com/esper/.  
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logic-based ones. This is not the case with RTEC (Artikis, Sergot, and Paliouras 2015), a recent, event 
calculus-based CER engine, which relies on reasoning over time intervals, windowing techniques and 
several other runtime optimizations to scale to massive data volumes and compete in efficiency with 
non-logical CER approaches. 

 

 Uncertainty Handling in Complex Event Recognition 

CER systems operate on noisy data streams. In addition to data uncertainty (e.g. missing, or erroneous 
input), due to the lack of veracity in big data streams, an additional source of uncertainty in CER is 
pattern uncertainty, i.e. cases where the employed complex event patterns are imprecise or 
incomplete. The ability to handle erroneous and uncertain input, as well as uncertain event patterns 
is an important aspect of CER research. A number of CER techniques that can handle uncertainty have 
been proposed, based mainly on automata, probabilistic graphical models and logic (Alevizos et al. 
2017).  

Automata-based approaches are usually probabilistic versions of crisp CER systems. For instance, in 
the probabilistic version of SASE, the goal is to recognize complex events with some probability, via 
considering alternative “event histories” and calculating a probability for a complex event based on 
the number of such histories that actually result to the recognition of the complex event and those 
that do not. Lahar (Ré et al. 2008) is another automata-based approach, in particular, a probabilistic 
version of the Cayuga CER engine. Lahar handles uncertainty via modelling events by first-order 
Markov processes, thereby being capable of probabilistic complex event recognition. 

Another line of research is based on probabilistic graphical models, with Markov Logic Networks (MLN) 
being the most prominent example of using such approaches for CER (Alevizos et al. 2017). Complex 
event patterns in MLN are represented as weighted first-order logic formulae. Patterns with larger 
weights are “stronger”, while patterns with smaller weights express conditions that are unlikely, but 
not impossible. Given a set of constants (representing e.g. time-stamps and event attributes) the 
formulae of an MLN specify a ground Markov network and standard inference methods from the field 
of probabilistic graphical models may be used to recognize complex events (Tran and Davis 2008; Liu, 
Deng, and Li 2017; Skarlatidis, Paliouras, et al. 2015). Other probabilistic graphical models-based 
formalisms have been used in a CER context as well. For instance, in (Cugola et al. 2015), the authors 
present an approach where the logical event pattern specification language of the TESLA CER system 
is embedded into a probabilistic framework based on Bayesian networks. In the field of logic 
programming, the ProbLog language, a probabilistic version of Prolog has been used as a basis for 
specifying uncertainty-handling event specifications (Skarlatidis, Artikis, et al. 2015). 

 

 Complex Event Recognition in Big Data Streams 

Scaling CER systems to massive, high-velocity data streams is an important research topic in the event 
processing community. A comprehensive survey of related methods and techniques may be found in 
(Flouris et al. 2017). Such techniques seek to optimize the event recognition task w.r.t. a number of 
performance metrics, the most important of which are throughput, i.e. the number of events 
processed by time unit, as well as recognition time. In addition to these metrics, used mainly in cases 
where the entirety of the data is delivered to a single processing node, approaches based on parallel 
or distributed CER try to balance the cost of communication between processing nodes and the 
detection latency, i.e. the time between the occurrence of a complex event and its detection from a 
central node whose role is to continuously monitor a multitude of geographically distributed streams. 
Finally, memory management is another important aspect of optimizing CER systems for processing 
big data streams. 
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In centralized approaches the goal is to achieve high throughput with low recognition time and a small 
memory footprint. To this end, a number of techniques are utilized in an attempt to cope with the 
volume and velocity big data event streams. The most important of these techniques are query 
rewriting, predicate-related optimizations and memory management. Query rewriting is an 
optimization technique that allows a suboptimal query expression to be rewritten in a form that is 
more efficient to execute. The goal is for the rewritten query to produce exactly the same results as 
the original one, while exhibiting improved performance w.r.t. the optimization objectives. Most 
approaches to query rewriting use a set of operators that allow to translate an event pattern into a 
semantically equivalent form, which allows for more efficient execution. Predicate-related 
optimizations use early event predicate evaluation to optimize the execution of queries for matching 
event patterns on the input stream. This is achieved by properly partitioning the input stream and 
filtering the selected events that will actually be part of complex event detection based on the query. 
Memory management techniques focus on optimizing event buffers by e.g. removing pieces of 
information stored multiple times across different buffers. We refer to (Flouris et al. 2017) for a 
detailed presentation of such techniques. 

The aforementioned techniques for scaling-up the CER process are generic, i.e. applicable to all CER 
approaches discussed earlier in this section (i.e. automata-based, tree-based or logic-based). In 
addition to such generic techniques, different CER approaches use special techniques to further 
increase their efficiency. For instance, automata-based approaches, which typically use non-
deterministic automata, need to store at runtime all possible candidate runs, where each run depends 
on non-deterministic choices such as ignoring or consuming an event, and different runs result in 
different outputs. The maintained set of runs rapidly becomes very large (Zhang, Diao, and Immerman 
2014), since it grows exponentially with the number of events in the temporal window under 
consideration. To cope with that, automata-based systems store the set of candidate runs in a 
compressed form, by e.g. factoring-out commonalities between different runs (Mozafari et al. 2013), 
or storing only so-called maximal runs from which other runs can be efficiently computed (Zhang, Diao, 
and Immerman 2014). Logic-based CER systems also resort to specialized techniques to tame the 
complexity of logical inference mechanisms, by e.g. translating rules into more efficient structures to 
perform incremental recognition as new events become available. Examples include temporal 
constraint networks (Dousson and Maigat 2007) and automata (Cugola and Margara 2010). Limiting 
the scope of inference via windowing techniques is also used in logic-based approaches, such as RTEC 
(Artikis, Sergot, and Paliouras 2015). Specialized techniques towards enhancing performance are also 
used to scale-up probabilistic CER systems, where the event recognition task is typically harder than in 
crisp CER systems. An overview of such techniques may be found in (Flouris et al. 2017).  

Distributed CER consists of two main approaches. The first is to centralize the monitoring of the stream 
and distribute the complex event processing to multiple sites, as proposed in (Schultz-Møller, 
Migliavacca, and Pietzuch 2009). The second is to distribute the monitoring of the stream to multiple 
sites (where each cite receives one input stream) and centralize the processing effort, as proposed by 
(Akdere, Çetintemel, and Tatbul 2008). The first of these approaches seeks to improve throughput, as 
well as memory management. Optimizing throughput is achieved thanks to the fact that the total 
number of input events is distributed across multiple nodes, thus overall the system processes more 
events per time unit. Memory management is also improved in this processing model, since distributed 
processing allows for dealing with larger time windows. In the second approach to distributed CER 
(Akdere, Çetintemel, and Tatbul 2008) multiple input event streams are received at multiple sites and 
a coordinator node communicates with all sites to detect complex events. In this strategy the goal is 
to optimize the tradeoff between the latency in detecting complex events and the cost of 
communicating with the coordinator node. An example of such an approach is presented in (Akdere, 
Çetintemel, and Tatbul 2008), where the authors use pareto-optimality theory to generate monitoring 
plans for the distributed processing that conform to particular communication cost and latency 
constraints. 
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 Machine Learning for Complex Event Recognition 

Manual authoring of complex event patterns is a difficult task that requires significant effort. 
Moreover, event patterns need frequent updating to cope with the drifting nature of streaming data. 
Therefore, machine learning techniques that are able to extract event patterns from data or revise 
existing ones as new observations become available are highly desirable. Both supervised and 
unsupervised techniques have been employed to automatically construct and adapt event definitions. 
Widely used unsupervised learning techniques include frequency-based analysis of sequences of 
events (Vautier, Cordier, and Quiniou 2007), or clustering of such sequences (Lee and Jung 2017). Such 
approaches are promising for discovering unknown events but are limited to propositional learning, 
therefore they cannot be used to learn complex event patterns expressing relations between events 
or attributes thereof. Moreover, these techniques are hard to adapt towards learning the structure of 
complex events that are not frequent in the data – for instance in cases where the goal is to learn event 
patterns of abnormal behaviour.  

A few approaches to supervised learning of complex event patterns have been proposed. In (Margara, 
Cugola, and Tamburrelli 2014) the authors propose a combination of techniques for learning patterns 
in the TESLA language (Cugola and Margara 2010), however, their approach is relatively ad-hoc, it is 
hard to evaluate in more mainstream machine learning settings and has limited support for the 
incorporation of background knowledge in the learning process. In (Mousheimish, Taher, and Zeitouni 
2017) the authors use an existing method for shapelet learning (extracting patterns from time-series 
data) and propose a technique for temporally combining the extracted shapelets to form event 
patterns over multiple streams. Patterns learnt with this approach have limited expressive power, 
while background knowledge is also hard to utilize. 

A common feature of all the above-mentioned techniques is that they assume a batch learning setting, 
where the training data are available before learning begins and the generated models cannot be 
updated in the face of new data that stream-in. Given the streaming nature of big data flows in CER, 
machine learning techniques for learning complex event patterns must be capable of learning in an 
online fashion.  

A different line of work towards machine learning of event patterns has been put forth in logic-based 
CER approaches. Using logical formalisms as a basis for CER allows access to well-established machine 
learning techniques from the fields of Inductive Logic Programming (ILP) (Raedt 2008) and Statistical 
Relational Learning (Raedt et al. 2016), which allow to learn patterns expressing arbitrarily complex 
relations and constraints between events and event attributes, while easily utilizing rich domain 
knowledge in the process. For instance, in (Carrault et al. 2003) the authors use an off-the-shelf ILP 
system to learn complex event patterns in the chronicle formalism (Dousson and Maigat 2007). 
Moreover, online learning techniques have been proposed in event calculus-based CER approaches 
(Katzouris, Artikis, and Paliouras 2016; Michelioudakis et al. 2016). 

  

 Complex Event Recognition for Mobility Data 

CER techniques are becoming increasingly important in a wide range of applications involving mobile 
objects, where real-time situational awareness is a requirement. Traffic/transport monitoring in 
intelligent transportation systems (Dasarathy 2011) is a prominent application domain. To give but a 
few examples, in (Terroso-Saenz et al. 2012) the authors use sensor data from a vehicular network, in 
addition to environmental and weather data to detect different levels of traffic jams with an event 
processing methodology, while in (Michelioudakis, Artikis, and Paliouras 2016) data from on-vehicle 
sensors and sensors mounted on road segments are used to learn complex event patterns for the early 
detection of traffic jams. In (Terroso-Saenz et al. 2015) a CER-based approach is proposed that allows 
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to detect interesting situations related to the passengers’ comfort and security, from data originating 
from sensors installed in different parts of the vehicle. Related approaches are presented in (Artikis et 
al. 2013, 2014), where the authors propose CER-based techniques towards the detection of events 
related to congestion and quality of service in intelligent transport management applications. 

Maritime surveillance is another CER application domain related to mobility data. In (Patroumpas et 
al. 2017) the authors propose a system for online monitoring of maritime activity over streaming 
positions from numerous vessels sailing at sea. The system employs an online tracking module for 
detecting important changes in the evolving trajectory of each vessel across time, and thus can 
incrementally retain concise, yet reliable summaries of its recent movement. In addition, thanks to a 
CER module, this system is also capable for offering instant notification to marine authorities regarding 
emergency situations, such as suspicious moves in protected zones, or package picking at open sea. A 
related approach is put forth in (Boubeta-Puig et al. 2012) where the authors propose a CER-based 
methodology for detecting vessel communication hijacking or failure, engine malfunction or ship 
collision. In (Terroso-Saenz, Valdés-Vela, and Skarmeta-Gómez 2016), CER is used to detect illegal 
and/or dangerous activities in the maritime domain, such as collisions, smuggling or human trafficking.  

Distributed processing is of utmost importance in mobility-related applications, such as those 
addressed in T&K. In such applications, massive data volumes are collected at different sites (e.g. 
moving vehicles) and much of the processing needs to take place in situ, since moving data around for 
centralized analysis incurs excessive communication costs. Equally important is the development of 
machine learning techniques for extracting and updating interesting complex event patterns from 
data, in order to e.g. discover abnormal mobility patterns, which domain experts have not yet 
identified. The requirement is for distributed, online machine learning, capable of handling the volume 
and velocity of data streams in mobility-related applications. 

 

4 Location Allocation Problems 

Location-allocation problems typical deal with provisioning of resources between facilities based on 
historic demand. The p-median approach is one such model that aims to minimise the total demand-
weighted distance between the demand points and the facilities. This NP-Hard problem aims to locate 
p facilities to serve n demand, by minimising the total demand-weighted distance between the 
facilities and the demand. Given the computational complexity of the p-median, several approaches 
have been proposed to solve problems in polynomial time. These solutions include using trees 
(Goldman, 1971) and heuristics (metaheuristics (Mladenović et. al, 2007), Lagrangian heuristics 
(Daskin, 2013)). Several approaches using genetic algorithms have also been proposed to leverage the 
power of AI in solving the p-median problem in polynomial time (Bozkaya et. al, 2002; Alp et. al, 2003).  

The formulation of the p-median problem by ReVelle and Swain provides a robust framework for 
solving location allocation problems. This is an unconstrained formulation of the problem as it does 
not take facility capacity into account when making location-allocation decisions(ReVelle and Swain, 
1970). Alp, Erkut and Drezner (2003) provide a Genetic Algorithm approach to solving Revelle and 
Swain’s model in polynomial time (Alp et. al, 2003). 
Genetic algorithms can also be parallelised to shorten execution time. To fit in with a big data 
ecosystem Maqbool et. al, (2019) propose an approach to parallelisation. The Scalable Genetic 
Algorithm (S-GA) implementation that has been developed under the Boost 4.0, LAMBDA, SLIPO, and 
QROWD projects, provides a parallelisation strategy that utilises the Apache Spark framework 
(Maqbool et. al, 2019).  
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