Big Data for Mobility Tracking Knowledge Extraction in Urban Areas

D4.1 Analytics for Mobility Patterns

Detection and Forecasting
€]

[)
Track & Know

Document Summary Information

Grant Agreement No | 780754 ‘ Acronym ‘TRACK&KNOW

Full title Big Data for Mobility Tracking Knowledge Extraction in Urban Areas
Start Date 01/01/2018‘ Duration ‘36 months

Project URL https://trackandknow.eu/

Deliverable D4.1 Analytics for mobility patterns detection and forecasting

Work Package

WP4 Big Data Analytics Toolboxes (BDA Toolbox)

Contractual due date | 30/6/2020 | Actual submission date |30/6/2020
Nature Report Dissemination Level |PU
Lead Beneficiary UPRC

Contributions From

Responsible Author

Eva Chondrodima (UPRC), Christos Doulkeridis (UPRC), Harris Georgiou

(UPRC), Panagiotis Nikitopoulos (UPRC), Panagiotis Tampakis (UPRC)
Mirco Nanni (CNR), Agnese Bonavita (CNR), Roberto Trasarti (CNR)
Feng Liu (UHASSELT), Cheng Fu (UZH), Ibad Kureshi (ILS)

Harris Georgiou (UPRC)

https://trackandknow.eu/

HISTORY OF CHANGES

Version Date Changes Author
Initialization / Table .
0.1 7/2/2020 of Contents H. Georgiou
Conversion to .
0.2 20/5/2020 IATEX format H. Georgiou
Section 3.5 contribu- .
0.3a 5/6/2020 tions (UPRC) E. Chondrodima
Section 3.8 contribu- .
0.3b 6,/6,/2020 tions (UHasselt) F. Liu
Section 3.2-3.3 contri- | M. Nanni, A.
0-3¢ 7/6/2020 butions (CNR) Bonavita, R. Trasarti
Section 3.9 contribu-
0.3d 7/6/2020 tions (UZH) C. Fu
Section 3.10 contribu- .
0.3e 7/6/2020 tions (ILS) I. Kureshi
Section 3.6 contribu- .
0.3f 8/6/2020 tions (UPRC) H. Georgiou
Section 3.4 contribu- .
0.3g 8/6,/2020 tions (UPRC) P. Tampakis
Section 3.7 contribu-|C. Doulkeridis, P.
0-3h 14/6/2020 tions (UPRC) Nikitopoulos
Section 3.x revisions & .
0.4a 14/6,/2020 formatting (UPRC) H. Georgiou
0.4b 16/6,/2020 Sections 1.x-2.X CO= |y 2o
: tributions (UPRC) ’ &
Revisions in Sections E. Chondrodima,
0.5 18/6/2020 1.x-2.x-3.x (UPRC) H. G?orglou, P.
Tampakis
Completed draft for .
0.6 19/6,/2020 review (UPRC) H. Georgiou
Internal review com-
0.7 23/6/2020 pleted T. Staykova
Reviewer’s feedback .
0.8 25/6,/2020 integrated (UPRC) H. Georgiou
0.9 26/6/2020 Section 3.9 edits (ILS) | I. Kureshi
1.0 29/6/2020 Completed final ver-|yy "0 oion

sion for submission

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Dzisclaimer

The content of the publication herein is the sole responsibility of the publishers and it does
not necessarily represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s)
or any other participant in the TRACK&KNOW consortium make no warranty of any kind with
regard to this material including, but not limited to the implied warranties of merchantability
and fitness for a particular purpose.

Neither the TRACK&KNOW Consortium nor any of its members, their officers, employees
or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any
inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRACK&KNOW Con-
sortium nor any of its members, their officers, employees or agents shall be liable for any direct
or indirect or consequential loss or damage caused by or arising from any information advice or
inaccuracy or omission herein.

Copyright message

© TRACK&KNOW Consortium, 2018-2020. This deliverable contains original unpublished
work except where clearly indicated otherwise. Acknowledgement of previously published mate-
rial and of the work of others has been made through appropriate citation, quotation or both.
Reproduction is authorised provided the source is acknowledged.

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

EXECUTIVE SUMMARY

The need for novel approaches and data analytics poses severe strain on efficient transportation
and planning, as the urban landscapes are evolving very fast in the Big Data era. Analysis tools
and data analytics tasks can also assist the improvement of several environmental aspects and
the quality of daily life as they can indicate insights regarding safety, risk assessment. The Big
Data Analytics (BDA) Toolbox of Track&Know enables us to better understand key mobility
factors, which drive automotive transportation or serve as hubs for accessibility to the respective
urban zones of interest. They also enable us to characterize traffic flows, regular routes, drivers’
behavioural patterns in the space and time, as well as their relationship and mutual interaction
with the contextual environment.

This deliverable D4.1 concludes and reports the products of Task 4.1 regarding the ‘Analytics
for mobility patterns detection and forecasting’. More specifically, the main challenge of BDA is
to identify the real-world challenges that incorporate both the ‘big data’ and the ‘data analytics’
aspects, establish specific top-level functionalities that are currently sub-optimal or unavailable
and then develop specific solutions for each one of them. At the same time, the BDA Toolbox
must be as generic, autonomous and modular as possible, in order to be easily applicable to other
BDA contexts and dataset modalities not included in Track&Know, e.g., from the maritime or
the aviation domain, with as little changes as possible.

Based on these challenges, the BDA Toolbox consists of various task-specific components that
are also generic enough to be easily applied to a much larger context than Track&Know. Each
component formalizes a specific sub-task, e.g. discovering common routes or personalized trips
from historic trajectory data, and provides a solid theoretical framework on how this problem
can be addressed, designing beyond-state-of-the-art algorithms and methods. The developed
modules are implemented inherently for the big data context and extensive experimental work
is conducted to validate and optimize the models. Furthermore, the components are integrated
for online or offline deployment in the context of Track&Know platform for further experiments
and for supporting the project’s demonstrators. More details are provided in section 1.4 with the
structure of this report, as well as in section 2.2 with a brief summary of the BDA components
and the functionalities they provide.

The presentation of the BDA components show that the Toolbox achieves a closely collaborat-
ing set of modules that provide top-level functionalities, ranging from customized pre-processing
and data restoration & transformation per-component to trajectory analytics & clustering, dis-
covery of mobility networks & personalized trips, hotspot analysis, driver behaviour profiling,
traffic flow dynamics, etc. As this deliverable D4.1 presents in detail, the Task 4.1 requirements
are met and at the same time the BDA Toolkit is versatile and modular enough that it can be
employed to a much wider range of challenges than what is included in the scope of Track&Know.

TABLE OF CONTENTS

1 Introduction

1.1 Purpose and SCOpPe
1.2 Approach for the Work package and relation to other Deliverables
1.2.1 Approach & Methodology
1.2.2 Relation to other deliverables
1.3 Mapping Track and Know outputs
1.4 Structure of the deliverable o

Relevance to the Track and Know platform

2.1 Track and Know platform at a glance
2.2 The Big Data Analytics (BDA) Toolbox

Big Data Analytics (BDA) components

3.1 Adaptive Extraction of Individual Locations of Interest
3.1.1 Trajectory segmentation
3.1.2 Related Work oo
3.1.3 Problem definition o
3.1.4 Self-Adaptive Trajectory Segmentation
3.1.5 Evaluation Measures for segmentation
3.1.6 Experiments e
3.1.7 Adaptive location extraction with TOSCA
3.1.8 Impact on location extractiono
3.1.9 Conclusion e

3.2 Analysis of electrificability of trips
3.2.1 Input movement data
3.2.2 Preprocessing and elevation enrichment
3.2.3 Consumption estimation Lo
3.2.4 Model Implementation and output format
3.25 Testsandcasestudy L Lo
3.2.6 Conclusion

3.3 Distributed Sub-trajectory Clustering
3.3.1 Imtroduction
3.3.2 Related Work oL
3.3.3 Problem Formulation
3.3.4 Problem Solution
3.3.5 Experimental Study o oo

3.4 Future Location Prediction (FLP) - Trajectory Prediction (TP)
3.4.1 Part I: NN-based for short-term
3.4.2 Part II: Pattern-based Future Location Prediction

3.5 Driver behavior profiling L o
3.5.1 Trajectory analytics for driver profiling
3.5.2 Problem description Lo L
3.5.3 Road matching and filtering L.
3.5.4 Dynamic Temporal Resampling Buffer (DTRB)

T W NN =

&
&rack&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.5.5 Feature extraction via trajectory analytics 86
3.5.6 Feature selection for dimensionality reduction 89
3.5.7 Unsupervised learning - Clustering 92
3.5.8 Experiments and Results 95
3.5.9 Discussion 100
3.5.10 Enhancements & Future work 101
3.6 Hot Spot Analysis L 101
3.6.1 Related Work o 103
3.6.2 Problem Formulation 105
3.6.3 An Exact Algorithm: THS 107
3.6.4 An Approximate Algorithm: aTHS 110
3.6.5 Empirical Evaluation oL oo 112
3.6.6 Summary and Future Work 114
3.7 Identifying business activity-travel patterns based on GPS data 115
3.7.1 Problem statement L 115
3.7.2 The proposed method oo L 116
3.7.3 Experimental results Lo o 117
3.8 Semantic Enrichment of Trajectory for Cross-Scale Analysis 123
3.8.1 A POI-Quadtree-based Variable-Resolution Enrichment Model for Trajec-
tory Simplification oL oL o 123
3.8.2 The Application of Variable-resolution Enrichment Model for Cross-scale
Visual Analytics on Dashboard 124
3.9 Genetic p-Median Solver for Mobility driven Location-Allocation 126
3.9.1 Description of Problem and Approach 126
3.9.2 Methodology e 127
3.9.3 Implementation 129
3.9.4 p-Median Application 132
4 Conclusions 133

5 Annex I: Ethics report 134

L
;}Track&Know D4.1 Analytics for mobility patterns detection

H2020-ICT-2017-1

TERMS & ABBREVIATIONS

ALS
BDA
BDP
BSON
CER
CPU
CSsv
DP
GPS
HDFS
JSON
MBR
NoSQL
OSM
PAP
POI
RAM
RDBMS
RDD
SIS
SL
SSH
STR
TRL
VFI
VM
WGS
WKT
XML

Approximation Line Segment

Big Data Analytics toolbox

Big Data Processing toolbox

Binary encoding of JSON-like documents
Complex Event Recognition toolbox
Central Processing Unit
Comma-Separated Values
Douglas-Pecker

Global Positioning System

Hadoop File System

JavaScript Object Notation
Minimum Bounding Rectangle

Non SQL or Non Relational

Open Street Maps

Papworth

Point-of-interest

Random Access Memory

Relational Database Management System
Resilient Distributed Dataset
Sistematica

Spatial Length

Secure Shell

Sort-Tile Recursive

Technology Readiness Level
Vodafone Innovus

Virtual Machine

World Geodetic System
Well-known Text

eXtended Markup Language

LIST OF FIGURES

0O Ui Wi

el e e el el)
N O Ul W N~ O

18

19

20
21
22
23

24
25
26
27

28

29
30
31
32
33
34
35
36

Overview of the Track&Know Big Data Platform.. 6
Example of location extraction process 12
Frequency distribution of pseudo-stop durations 17
Time threshold distributions of inferred segmentations 19
Mobility F-1 measure results L oo 21
Distributions of average number of points per segment 22
Distribution of the number of trajectory segments 23
Distributions of average length and duration of trajectory segments 24
Comparison of sample trajectory segmentations 25
Relative increase of number of locations extracted w.r.t. FTS1200. - + - « « 28
The reconstruction and altitude enrichment process 31
The physical forces to which a vehicle is exposed during the movement 32
The resulting enriched trajectories with the estimation of the battery consumption. 35
Percentage of simulated EV trajectories in battery overflow 36
Computation time of EV trajectory simulation over different dataset sizes 36
Usage and integration schema of electrificability simulation 37
(a) Six trajectories moving in the xy-plane and (b) 4 clusters (red, blue, orange

and purple) and 2 outliers (black). L oo 40
The DSC algorithm. (Job 1) DTJ and Trajectory Segmentation and (Job 2)

Clustering and Refine Results. 46
(a) Five trajectories A - B, A - C, A —- D, C — Band D — B, (b) TSA;

segmentation, (c) T'SAs segmentation L. 48
Comparison of the RMSE metric between DSC, S? T-Clustering and TraClus . . 54
Scalability by varying (a) the size of the dataset and (b) the number of nodes.. . 55
Sensitivity in terms of (a) execution time (b) in terms of RMSE. 56

Visualization of the proposed FLP approach, composed of 3 phases: Data prepa-
ration (green square), NN model (gray square), Data transformation (red square).

The NN is composed of one LSTM cell and two fully connected layers. 60
A graphical representation of a vanilla LSTM memory cell 60
Overview of the FLP online procedure with pre-trained model 61
Overview of the employed VFI subset. 62
Loss function during training procedure in the training and validation sets for the

3 employed NN models. 62
Boxplots for the Haversine distance MAE for certain prediction intervals in min-

utes for the LSTM model. 64
The PITHIA Architecture. 69
The FLP algorithm 71
The 2-D map of SMOD 73
SMOD in the (a) xy-plane and (b) in 3D (the z dimension is time) 73
Discovered patterns in the (a) xy-plane and (b) in 3D (the z dimension is time) . 74
Network edges in the (a) xy-plane and (b) in 3D (the z dimension is time) 74

Reconstructed network in the (a) xy-plane and (b) in 3D (the z dimension is time) 74
SMOD - Accuracy of the prediction in MAE 75

o o2
%}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

56

57
58
59
60
61
62
63
64
65
66

67

68

VFTI - Accuracy of the prediction in MAE 76
SMOD - Latency e 76
SMOD - Throughput« e 7
VFI- Latency T
VFI - Throughput 78
Example of raw GPS data map-matching & filtering from the dataset used. . . . 85
Simplified example of DTRB functionality 87
DTRB internal pipeline for validity checks. 87
Example of DTRB processing of low-res GPS data 89
Example of ‘bad’ (information-poor) feature function for DBP (acceleration: A}y***™). 90
Example of ‘good’ (information-rich) feature function for DBP (speed: U/F14). . 90
Example of ‘good’ (information-rich) feature function for DBP (speed: U/“™"). . 91
DTRB: Histograms of extracted slices versus data points and temporal span used. 96
K-Means reference model: 4 clusters, smallest 4.2%, silhouette=0.6. 97
TSL1 model: 4 clusters, smallest 8.1%, silhouette=0.9. 97
TSL2 model: 8 clusters, smallest 3.4%, silhouette=1.0. 98
TSL3 model: 5 clusters (balanced), silhouette=0.3. 99
Overview of THS algorithm. 108
Example of cells at distance from a reference cell ¢; (the dark color indicates the

weight of their contribution to ¢;’s value ;). 110
Hot spots discovered in the wider area of Greece: most hot spot cells are located

in Athens and Thessaloniki. 112
Hot spots discovered when focusing on the area of Athens. 113
Top-50 hot spots discovered when focusing on the area of Athens. 113
The overall structure of the method 117
Variable cutting values L o 118
Stop classification and corresponding categorized values of the classification variables118
The clusters for vans, cars and trucks-3ax 119
Similarities and differences in the clusters across vehicle types 120
Ratios on trucks-3ax from six companies 121
Ratios on trucks-3ax from six individual vehicles from the company ‘3690’ 121

Visualization of a trajectory on top of the POI-quadtree by the plugin. The POI-
quadtree nodes that are passed by the trajectory are highlighted. The highlighting
is dynamically rendered at different spatial scales.. 125
Figure depicting the p-Median workflow. (a) Catchment area definition, (b) map-
ping >97% of the service users in the catchment, (¢) Creating a grid based on
user supplied granularity, (d) merging the grid and users to determine demand
per grid square, (e) calculating distances between each grid square, (f) a genetic
algorithm to calculate the P-optimal locations/grid squares based on distances
and demand (g) Resultant output of optimal locations for resource allocation, (h)
final GeoJSON output for dashboard integration 128
Result of the Track&Know Genetic p-Median solver and a comparison to a com-
mercial solutiono L 131

LIST OF TABLES

I

Ut

Trajectory segmentation: Evaluation on Rome data. 20
Trajectory segmentation: Evaluation on London data. 20
Parameters and default values (in bold) 53
FLP ERROR (Mean Haversine Distance) in meters - Evaluation on VFI subset

for certain prediction intervals in minutes. 63
Statistics for the run-time in seconds for one prediction per consumer. 64
Statistics for 100, 1000 and 10000 consumed messages, for time in seconds, number

of vehicles and number of predictions. 65
Statistics for 1, 10 and 60 seconds, for number of consumed messages, number of

vehicles and number of predictions.o Lo 65
The ground truth hidden in SMOD 75

Overview of symbols. 106

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

1 Introduction

Big Data Analytics (BDA) Toolbox harvests huge volumes of trajectories from Floating Car
Data (FCD). When these data are considered in the context of urban environments, analysis
methods can facilitate the extraction of useful knowledge and the provision of sophisticated
services towards vehicles’ drivers, citizens, stakeholders and city operators. The outcome of
these methodologies can be exploited and combined with contextual information to automati-
cally detect event occurrences within a system or a modelled domain, known as Complex Event
Recognition (CER). An event recognition system accepts streams and archival data of low-level
events (for example sensor data) and uses predefined patterns to recognize high-level events of
interest, that is, events that satisfy/match these patterns. As an example, consider the real-time
detection of vehicle/driver behavioural profile while in a specific type of urban area (e.g. city
center), or events related to traffic in areas at different hours (high-level events), via combining
low-level driving events or mobility patterns originating from in-vehicle or static sensors and
probes.

Work package 4 introduces novel methodologies within Toolboxes which enable citizens and
stakeholders to draw useful conclusions regarding the spatio-temporal distribution of traffic flows
and mobility patterns using data gathered and fused from a wide variety of sources. It also
addresses the issue of recognizing different classes which are formed in a data-driven way by
analyzing trajectory analytics, events, accidents, etc., thus improving situational awareness and
risk assessment. Using these methods and tools, forecasting models will be designed for the

short- and long-term modalities that describe these mobility patterns in the future.

1.1 Purpose and scope

This task develops customized data analysis methods and tools over Big Mobility Data, including
cluster analysis and motion pattern detection, by exploiting enriched and integrated data from
multiple sources. Furthermore, it develops algorithms for short- and long-term forecasting of
routes, flows, concentration nodes, as well as contextual characteristics, supporting outlier de-
tection, taking advantage of previous data analytics results, as well as complex events produced
within Work package 4.

As a result, this deliverable describes in detail the framework of BDA and the Toolbox that
was developed. More specifically, D4.1 analyses the specification and prototype implementation
of: (a) customized data analysis methods and tools over Big Mobility Data, including cluster
analysis and motion pattern detection, by exploiting enriched and integrated data from multiple

sources; and (b) algorithms for short- and long-term forecasting of routes, flows, concentration

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

nodes, as well as contextual characteristics, supporting outlier detection, taking advantage of
previous data analytics results, recognizing driving behaviour and traffic flow hotspots. The
core capabilities of the tools and the application of the algorithms developed, are demonstrated
through a series of data-driven experimental work, closely related to the Track&Know integrated
platform and its use in the project’s pilots.

Deliverable D4.1 is submitted on month M30 of the project, documenting the full design
and implementation details of all the BDA components, while the Toolkit is integrated in the

Track&Know platform and ready to be used by the project’s pilots.

1.2 Approach for the Work package and relation to other Deliverables

1.2.1 Approach & Methodology

Work package is responsible for designing, implementing and evaluating all the BDA-related
components of Track&Know, including pre-processing of streaming data, exploiting enrichments
(e.g. local weather), training analytical and predictive models, identifying information-rich ve-
hicle mobility attributes and producing higher-level reasoning in relation to specific situations
(e.g. risk of accident).

Several challenges are addressed by each component, depending on the type of data modalities
used and the exact target of each sub-task. Trajectory analytics provide efficient segmentation
and automatic extraction of locations of interest for individuals. This context is extended to
analyze and investigate the optimal trip planning for electric vehicles. Clustering is also employed
in trajectory analytics, in order to identify common routes and sub-segments. Predictive analytics
is investigated via two different and supplementary approaches: (a) a deep learning method for
robust ‘blind’ detection of mobility patterns in the short-term; and (b) a clustering-based method
that predicts the evolution of vehicle trajectories in the long-term based on common routes.
For driver behaviour characterization, low-resolution GPS data and context-aware enrichments
(local speed limits) are pre-processed, augmented via robust feature encoders and categorized
via unsupervised models in a purely data-driven way. Additionally, the detection of hotspots,
i.e., nodes of high spatio-temporal density of traffic, are detected dynamically via mobility flow
analysis, while other methods are also applied for activity-based pattern detection, semantic
enrichment analysis and genetic p-median solver for location-allocation problems.

The BDA Toolbox was designed from the beginning as a collection of autonomous yet easily
interconnected components that address various tasks in the general context of data analytics
for the project’s big data challenges. Although each component has its own internal structure
and processing pipeline, they all exploit parts of the processing and output that is produced by
the BDP Toolkit, which is the main producer of the input data feeds here. As such, each of
the BDA components was designed, developed and tested upon different Track&Know sub-tasks

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

and datasets, which are presented separately in detail in the corresponding sub-sections. This
modular approach enables the application of these components selectively, combined for specific
purposes and problems at hand, not only in the context of Track&Know but in any similar BDA

challenges.

1.2.2 Relation to other deliverables
The work described in this deliverable relates to previous deliverables of the project, as follows:

e D1.2 ‘Corporate Big Data Requirements’: The specification of requirements regarding stor-
age and querying of big data for supporting the needs of advanced data analysis operations

has guided some design decisions made in this deliverable.

e D2.1 ‘Architectures for the management of structured € unstructured data streams’: The so-

lutions described in this deliverable are compliant with the overall architecture of Track&Know.

e D2.2 ‘Architectures for the Management of Batch and Interactive Data Sources’: Includes
the comparative overview of different NoSQL solutions and the selection of a document-

oriented store (MongoDB) to be the basis of the batch storage solution in Track&Know.

e D3.1 “Data Acquisition and Integration Report™ This report essentially describes the pro-
cess that enriches mobility data by means of cleansing, map-matching, and associating
GPS traces with weather and points-of-interest (POIs). The resulting enriched mobility
data comprises the input data set for persistent and scalable storage that is considered in
this deliverable.

Additionally, this deliverable D4.1 is combined with deliverables D4.2 ‘Analytics for indi-
viduals’ mobility networks’ that describes another set of methods and techniques for creating
aggregated mobility models, D4.3 ‘Transfer learning for mobility data models’ and D4.4 ‘Ana-
lytics for complex event recognition’ that conclude the rest of the Work package 4 work, as well
as deliverables D5.1 ‘Visual Analytics for Big Mobility Data’ and D5.2 ‘Visual Analytics for
complez events’ that explore the presentation and visual analytics aspects of the Work package
4 outputs. Finally, the BDA Toolbox components and their integration in the Track&Know
platform are associated with the three Demonstrator deliverables, i.e., D6.2 ‘Demonstrator 1
- Auto-Insurance & Innovative Mobility Services’, D6.3 ‘Demonstrator 2 - Emergency Health-
care’ and D6.4 ‘Demonstrator 8 - Fleet Management’, as described appropriately for individual

components.

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

1.3 Mapping Track and Know outputs

The following list describes how the Grant Agreement commitments are addressed in this report,
within both the formal Deliverable and Task description, regarding the work performed and the

project’s expected outputs.

o (T4.1/D4.1) “..develops customized data analysis methods and tools over Big Mobility
Data...”: Section 3, with each sub-section describing an individual sub-task and the com-

ponent developed to address it.

o (T4.1/D4.1) “..cluster analysis and motion pattern detection...’: Section 3.3 for sub-
trajectory clustering, as well as sections 3.1 and 3.2 on how these can be applied for

personalized trips characterization and energy use optimization.

o (T4.1/D4.1) “...exploiting enriched and integrated data from multiple sources...”: Section
3, with each component describing the exploitation of various data enrichments provided

by the BDP pipeline, e.g., as in section 3.8.

o (T4.1/D4.1) “...algorithms for short- and long-term forecasting of routes...”: Section 3.4,
with part-I describing the short-term approach (NN-based) and part-1T describing the long-

term approach (routes-based).

o (T4.1/D4.1) “...flows, concentration nodes, as well as contextual characteristics, support-

J

ing outlier detection...”: Section 3.6 for hot spot analysis, section 3.7 for activity-travel

patterns.

o (T4.1/D4.1) “..previous data analytics results, as well as complex events...”: Section 3.5

for driver behaviour profiling.

e (D4.1) “..core capabilities of the tools and the application of the algorithms developed, will be
demonstrated through an open research data pilot...”: Section 3, all component descriptions
include experimental protocols and results that are used as guidelines for setting up the

corresponding demostrators for D6.2, D6.3 and D6.4.

e (D4.1) “...report will include several use cases to allow the use and extension of the tools/algorithms...”:
Section 3, all component descriptions include experimental protocols and results that are

used as guidelines for setting up the corresponding demonstrators for D6.2, D6.3 and D6.4.

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

1.4 Structure of the deliverable

The structure of this deliverable is built around the core material of the BDA Toolbox, i.e., the
description of each individual component and how it relates to specific tasks in Work package 4
of Track&Know.

Section 2 provides a few comments about how the BDA Toolbox and individual components
relate to the overall Track&Know platform. Section 3 includes the core material for the BDA
Toolbox. Specifically, section 3.1 is for the extraction of individual locations for interest; section
3.2 is for the analysis of electrificability of trips; section 3.3 is for distributed sub-trajectory
clustering and its applications; section 3.4 is for Future Location Prediction (FLP) consisting of
two parts, part-I for the short-term context (NN-based) and part-II for the long-term context
(routes-based); section 3.5 is for driver behaviour profiling based on trajectory analytics; section
3.6 is for hotspot analysis and its applications; section 3.7 is for the identification of business
activity-travel patterns; section 3.8 is for the exploitation of semantic enrichments of trajectories
for cross-scale analytics; and section 3.9 presents a p-Median solver based on genetic algorithm
for location-allocation tasks. Section 4 concludes the report with some additional comments and

insights.

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

2 Relevance to the Track and Know platform

2.1 Track and Know platform at a glance

As presented in detail in deliverable D2.1, the Track&Know Big Data Platform consists of:

e Data sources, which represent the structured and unstructured data streams to be made

available and be connected to the platform;

e Data store, which represents the batch and interactive data sources that will be made

available and will be connected to the platform;

e Connectors, together with the Communication platform, that connect external Data sources
and the Data store and make them available to the platform, Toolboxes and Pilots;

e Underlying Infrastructure providing all the necessary Big data tools.

The Track&Know high-level architecture is illustrated in Figure 1 (source: D2.1).

Pilot ;':::::'rm & Innovathe Moblity Pilot Healthcare Service Optimisation Pilol Fleet Management
1 Task 6.2 2 Task63 3 Task64
A
Data Sources
Toolboxes
Data Streams:
Batch & Task 2.2
Interactive 05 Task 2.3
Kafka
Conmect
Data Store e
Task 2.3
e Task 3.2 =
e B - ::J:t- VA Toolbox
| ; W
Task 2.3 Task 5.1-52-53-54
ROBMS T'l‘ssu 32 I
—
ﬁ?mt [Coions
NoSQL
gKaﬂxa SIrEAMS g ssurws ﬁ
Task 2.3 Spar

Figure 1: Overview of the Track&Know Big Data Platform.

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

2.2 The Big Data Analytics (BDA) Toolbox

As described earlier, the BDA Toolbox is a collection of autonomous and closely collaborating
components that address specific sub-tasks of Work package 4, more specifically the BDA-related
functionalities of the Track&Know platform, summarized below - specific sections in 3.x provide
the details:

Extraction of Individual Locations of Interest: Given the GPS traces of a single mo-
bility user, this component identifies a trajectory segmentation based on individual stop distri-
butions, then performs a parameter-free spatial clustering of the start- and end-points, which
represent the locations that the user visited. Each output location is represented by a set or
points and its representative centroid. The component is realized in Python as a hybrid of
X-means (a centroid-based clustering method) and single linkage agglomerative clustering with
a statistics-based halt condition. The efficiency and the lack of parameters make this method
completely automatizes and suitable for working (sequentially or in full parallelism) over large
sets of users’ data. Each user is processed independently. The expected input is a set of GPS
traces of an individual.

Construction of Individual Mobility Networks (IMNs): This component builds a
network representation of the mobility history of a user. Nodes represent user’s Individual
Locations of Interest and edges represent the trips between two locations. Nodes and edges
are enriched with several statistics of the associated trips, such as temporal distributions and
distances. The component is realized in Python and completely automatized. Each user is
processed independently, based on a set of reconstructed trips as input.

Semantic Annotation of IMNs: This component analyzes the mobility history and the
IMNS of several users in order to characterize locations through mobility and contextual features,
then classifying locations into categories that are used to group individual locations of a user
into higher-level locations. The component is realized in Python and completely automatized.
Each user is processed independently. The primary objective of this component is to make IMNs
applicable to trip data different from private cars.

Extraction of mobility-based city indicators for transfer learning: Given a specific
geographical area, this component analyzes the corresponding road network structure and actual
mobility data to extract a list of several indicators that characterize the area. The indicators
currently include measures describing five types of phenomena: population concentration; traf-
fic flows; Individual Mobility Networks (see component above); road network structure; traffic
concentration on the road network. The component is realized in Python and completely au-
tomatized.

Analysis of electrificability of trips: Given the mobility data of a trip, the component
estimates the point-to-point charge consumption that an electric vehicle would require to perform

it. Given the trips of a user for a whole day and the initial charge level, this can be used also

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

to check if her daily mobility might fit an electric vehicle without the need of recharging. The
component is implemented in Java and completely automatized, and takes into consideration
various factors: speed, accelerations (currently inferred from GPS speed) and steepness (currently
inferred from public ground elevation models).

Trip planning and simulation for electric vehicles: This components finds the fastest
path between two points of a road network taking into consideration the limitations of an electric
vehicles, in particular: computes an estimate of battery consumption during the trip; where
needed, the trip will include a stop at a recharge station before battery depletion; the recharge
time is simulated and added to the overall travel time. The component is implemented in Python
and includes a (partially automatized) phase for the reconstruction of a road network enriched
with information about speeds, elevations and (derived from them) battery consumption; and a
(fully automatized) phase that computes the optimal path. The input consists of starting and
ending coordinates of the trip, and the starting battery level. The output includes the route, the
recharge points, the ending battery level and the travel time.

Individual long-term event risk prediction: The problem addressed consists in building
a predictive model able to assign a probability of some long-term event happens to an individual,
based on the computation of mobility features describing the user. The component combines
other ones listed above, in particular individual locations and IMNs, and on top of them builds
features of various types based on the mobility history of the user: mobility demand, driving
style, changes in mobility, mobility context. The features are correlated to events that happen
in the mid/long-term future, such as crashed in the next month, through a machine learning
predictive model. The component is implemented in Python, is completely automatized and
takes as input the mobility data of the user in the monitoring period, as well as (only for the
construction of the model, and not for its usage in prediction) a label specifying whether the
event is going to happen.

Traffic prediction in new urban areas: This method implements a network-based ML
approach to predict (or simply estimate) the traffic flow in urban geographical areas, exploiting
the road network structure, traffic flows in the neighborhood, and various open datasets about
the same area. The component is realized in Python and is partially automatized, as it requires
some data collection and preprocessing. The required input is the OD matrix between known
areas (obtained from trajectory data) and the list of POIs and Airbnb items with their features.
The output are the expected in- and out-flows between a new area (whose connection with the
existing ones is known) and all the others.

Distributed Sub-trajectory Clustering: The problem of Distributed Sub-trajectory
Clustering (DSC) lies in identifying groups of moving objects that moved ‘close’ enough in space
and time for at least some time duration, and whatever is the method it should be performed in
a distributed way (for scalability purposes). The proposed approach consists of three steps. The
first step is to retrieve for each trajectory, all the moving objects, with their respective portion

of movement, that moved ‘close’ enough in space and time for at least some time duration. The

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

second step takes as input the result of the first step and aims at segmenting each trajectory
into a set of sub-trajectories. The way that a trajectory is segmented into sub-trajectories is
neighborhood-aware, meaning that a trajectory will be segmented every time its neighborhood
changes ‘significantly’ so as to result to homogeneous sub-trajectories (w.r.t. their surrounding
moving objects). The above procedure will result to a set of sub-trajectories. In the third step
the goal is to create groups (whose cardinality is unknown) of similar sub-trajectories and at
the same time identify sub-trajectories that are significantly dissimilar from the others (called
outliers).

Future Location Prediction (FLP) - Trajectory Prediction (TP): The task of Trajec-
tory Prediction (TP) can be addressed via two distinct approaches. The first, ‘network-agnostic’
method assumes nothing about the underlying road network and exploits only a) patterns made
available by previous locations of various vehicles, and b) the very recent history of previous
locations, in order to predict the evolution of the vehicle’s future positions via Long Short-Term
Memory (LSTM) models for the purposes of Future Location Prediction (FLP). Note that this
method is able to predict future positions of vehicles with unknown historical trajectories in
the LSTM training phase, i.e., not included in the historical data used in training, as long as
they manifest more or less similar movement patterns. The input can be either the raw GPS
(noise-filtered) or their map matched counterparts (see BDP data pipeline module above). Also,
the map matching component can be employed to align the LSTM predicted locations as a post-
processing step. The second, ‘network-aware’ method exploits an underlying road network of
‘discovered’ as medoids via clustering and the evolution of the vehicle’s trajectory is based on
the map matching in a probabilistic sense, i.e., select the most probable route based on previous
history (training data). Both approaches can be enabled for batch or online modes.

Driver Behavior Profiling (DBP): The Driver Behavior Profiling (DBP) component im-
plements a data-driven approach to the challenge of analyzing, encoding and classifying driver
behavioral patterns in the short- or the long-term, which in principle are of unknown categories.
Multiple time series of moving vehicles, i.e, speed & acceleration in addition to location, are
tracked and analyzed, statistical features are calculated and then used as input for training clas-
sification models. In the case when specific driver categories are not provided as ground truth,
unsupervised learning (e.g. clustering) can be used instead. The trained models can then be
used in batch or online modes, in order to characterize the general driver behavior (long-term) or
tracking it as the vehicle moves (short-term). Previous work was on acquiring the state-of-the-art
in literature, which seems to be focused mostly around high-quality, high-rate data of location,
speed and acceleration. Other approaches require modalities outside the scope of Track&Know,
e.g. visual tracking of the driver’s face, proximity sensors installed on the vehicle, etc. Re-
garding trajectory data, there are approaches using statistical or spectral features for analyzing
the data series and detecting abnormalities. Additionally, the proposed approach is designed
for online/streaming mode and lightweight yet powerful analytics, in order to be applicable to

on-the-fly driver behavior profiling. A dynamic temporal resampling algorithm is employed for

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

transforming the sparse, variable-rate, GPS-only trajectory data into three distinct location-
invariant time series, namely speed, acceleration and turn rate, after the raw GPS trajectories
are map-matched to the underlying road network and noise-filtered for removal of artifacts. A
wide range of statistical, time series and spectral methods are implemented as feature functions
or ‘encoders’ of various aspects of short-term mobility tracking. The results show that such
an approach is feasible, despite this challenging context of constraints, providing a data-driven
adaptive way to recognizing ‘normal’ and ‘abnormal’ driving patterns on-the-fly.

Hot spot Analysis: Hot spot analysis is the problem of identifying statistically significant
spatial clusters from an underlying data set. We have developed a parallel and scalable algorithm
(THS) for trajectory hot spot analysis, using an adapted version of the Getis-Ord statistic tailored
for trajectory data rather than point data. In brief, we split the 3D spatio-temporal space in
cells of user-defined granularity and we map the positions of moving objects to cells. Then, we
perform parallel processing of these cells to compute the Getis-Ord statistic for each cell, and we
are able to output the top-k cells according to their Getis-Ord value. Our algorithm is developed
in Apache Spark.

Identifying business activity-travel patterns based on GPS data: As employers, sup-
pliers and transport providers, organizations are responsible for the generation of a large part
of traffic flows on the transport network. However, despite the significance of business travel to
overall mobility, the underlying activity compositions of the movement and the decision making
process within organizations have not been well understood. To address this challenge, a new
method has been developed in this toolbox, aimed to identify typical activity-travel patterns from
business trips and characterize travel behavior of specific companies or vehicles (and correspond-
ing drivers) based on the obtained patterns. The method and derived results will help uncover
business activities and travel features, providing an improved behavioral mobility understanding,
and exploring factors that would lead to addressing the increasing challenges related to business
travel (e.g. environmental issues, driving safety, and travel demand management). .

Semantic Enrichment of Trajectory for Cross-Scale Analysis: In this component,
we will investigate how trajectories can be semantically enriched with geospatial context (e.g.,
POIs, road network, geographical events, land use, weather) to allow cross-scale analysis in
the spatial, temporal and thematic dimensions. This is based on the observation that mobility
behaviors may manifest different movement patterns at different scales in the spatial, temporal,
or thematic domain. The main focus here is to make the component scalable to different amounts
of data (i.e., volume of big data). Spark and Python are adopted in the implementation.

Genetic p-Median solver: This component uses mobility information to infer demand
points and make location-allocation decisions for facilities. The BDA Toolbox implementation
uses a Spark and node-level parallelised Genetic Algorithm approach to solve the p-Median

problem. The tool is able to solve this NP-hard problem in polynomial time.

10

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3 Big Data Analytics (BDA) components

A brief description of the BDA Toolbox was summarized in section 2.2, providing insights on
what is included and what top-level functionalities are available ad-hoc for addressing specific
sub-tasks. In this section, every individual BDA components is described in detail, including
the specific problem formulation, the methodology employed, the experimental protocol and the

datasets used, as well as the results and the outcomes from the approach.

3.1 Adaptive Extraction of Individual Locations of Interest

In summary:

e (eneric question addressed: Identify sub-groups of stop points.
o TrackéKnow specific question: Identify the relevant locations of an individual user.

e Nowelty / Advantage over existing methods: Does not require stop duration thresholds, and

provides more stable locations.

e FExperiments conducted: Testing on a Track&Know Pilot dataset with quantitative and

qualitative evaluations.
e Type of analytics: Descriptive analytics.

o Automation / TRL: TRL 4 (automated tool, tested on real data for simulation-based

applications)

e FEaxtension to other domains: None; the tool is specific for vehicle mobility data.

Users’ locations detection is a basic task for many applications and analyses related to the
GPS mobility data of individuals. Its objective is to identify the areas where each user performs
her activities, based on the analysis of the places (essentially, GPS points) where she stopped.
Examples of locations are home, the work place, a supermarket, a gym, a fuel-station, etc. In
literature this problem is typically addressed by first identifying the user’s stops with some simple
heuristics, and then applying generic clustering algorithms which are able to group the user’s stop
observations by means of some distance function. Thus, the resulting clusters will be interpreted
as user’s locations. Figure 2 shows a fictitious example of all the process.

However, existing solutions suffer from various drawbacks. First, stops are typically defined
based on fixed thresholds that describe when the user performs a significant stop, under the

assumption that all users can fit the same threshold values. As we will discuss in this section,

11

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

X
Q/ II, \\\ \\\. .\, ! \\.\ .
\\\\ ‘ \\‘ \\\ \\\ ‘ “ \\\\ .. . @
\ o | X:> [iy
/‘ * N /‘ b . . @
- a A @

Figure 2: Example of location extraction process: the initial sequence of points is segmented into
trips and stops, which are then clustered to identify locations

such assumption can be handy for first-cut solutions, yet they might miss stops that are significant
for the single individual yet not fitting the global thresholds. The solution we provide on this
line consists in an automatic procedure to find custom thresholds for each user, thus adapting
to the individual behaviour. Second, the stop clustering phase is sometimes focused on specific
optimization criteria, such as compactness maximization or density connectivity, that not always
correspond perfectly to the notion of locations, and therefore the results (though optimal w.r.t.
its own criteria) are not good locations for mobility applications. To this purpose, we adopt an
ad hoc approach called TOSCA [66], adapted to integrate the stop detection method mentioned
above. TOSCA is a parameter-free solution that, again, automatically adapts to the individual
data, and whose good scalability performances make it a perfect fit for the big data applications
tackled within the Track&Know project.

In this section we will introduce our new adaptive stop detection schema, and discuss the stop
clustering solution adopted. Finally, evaluations will be provided both in terms of stop detection
(compared to standard approaches) and in terms of impact on the final location detection phase.
Indeed, the improved procedure introduced here, typically allows to identify a larger set of
locations for the user, since for some of them it is possible to lower the thresholds and discover

individually-significant stops.

3.1.1 Trajectory segmentation

In mobility analytics one of the fundamental concepts is movement, meaning with that the part
of mobility data that describes a transfer from one place where the individual (or the object)
was staying, to another one were the user will stop. Identifying movements in the raw stream of
positions, for instance the continuous flow of GPS traces of a vehicle, is essential yet non-trivial.
While it is simple to define a stop in geometrical terms, it is much less clear how to define
significant stops, i.e. stops that might have some meaning for the user (for instance, stopping
to do some activity before leaving), as opposed to stops that are simply incidental (for instance,
due to a small traffic jam).

Practitioners in the mobility analytics domain defined several simple strategies to select stops
in the mobility data stream (a brief account of literature on this topic is provided in the next sec-

tion), each of them apparently capturing well some specific concept or some application-specific

12

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

idea of stop. For instance, some solutions simply identify the moments where the object did
not move, based on some thresholds, while others select the stops that have a duration compat-
ible with some specific task, for instance discarding stops at a supermarket if their duration is
physically too short to be able to enter, buy and exit. However, most existing solutions suffer
from two important limitations: (i) they are based on critical thresholds that the user needs
to choose accurately, and in most cases it is difficult to understand what value is the best; (ii)
such thresholds are global, i.e. the same threshold value applies to all the moving individuals,
irrespective of any distinctive characteristics they might have. The reason of the latter is that,
while an overall evaluation might be performed to guide the choice of a global threshold, doing
that separately for each individual might be impossible if their number is huge.

In our work we try to overcome the limitations highlighted above, providing a general method-
ology that inspects the mobility of the individual, and identifies segmentation thresholds that
apparently match her mobility features. The process allows to get rid of any input parameter,
adapts thresholds to each single individual and, most importantly, is completely automatic, thus

applicable to large pools of users.

3.1.2 Related Work

Segmentation is a technique for decomposing a given sequence into homogeneous and possibly
meaningful pieces, or segments such that the data in each segment describe a simple event or
structure. Segmentation methods are widely used for extracting structures from sequences, and
are applied in a large variety of contexts [177]: time series [73, 24], genomic sequences [102, 139,
153], and text [96], to cite a few.

The segmentation of human trajectories is a very valuable task as it enables the develop-
ment of mobility data models [155, 64] and applications like carpooling [63], or trajectory pre-
diction [180]. Various simple approaches are currently adopted in practice. In [179] human
trajectories are extracted adopting a predefined rule based on a pair of spatio-temporal param-
eters regulating the end of a trajectory and the start of the subsequent one. Similarly, in [68]
the trajectory is divided into subsequent trips if the time interval of “nonmovement” exceeds a
certain threshold. In [203] it is described a change-point-based segmentation approach for GPS
trajectories according to the transportation means adopting a universal threshold for determin-
ing whether a segment is “walk” or “nonwalk”. The work in [23] presents a theoretical framework
that computes an optimal segmentation by using several criteria (e.g., speed, direction, location
disk) that are satisfied in each partition, thus making the approach local, and applied computa-
tional geometry methods. However, their methods are general and not clearly applicable to the
human trajectory context, where a trip can be complex and not show the geometrical/movement
uniformity the methods look for. Finally, each criterion corresponds to thresholds that the user
must set, without clear guidelines on how to choose them.

The authors of [196] segment the trajectories in two steps. The first segmentation is performed

by means of simple policies with respect to temporal and/or spatial predefined constraints. Then,

13

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

the trajectories are divided into stops and moves observing variations of the speed of the object.
If the variations of the speed is below a speed threshold and there is a sufficient number of
observations, then the portion of trajectory is annotated as a stop. The speed threshold is not
general but changes according to the user behavior and also to the surrounding of the stop.
In [164] is defined a measure of the density of the points in the neighbourhood of each trajectory
point, the Spatio-Temporal Kernel Window (STKW) statistics. To determine the start and end
points of segments, the algorithm looks for maximal changes in STKW values. The focus of
the approach is on capturing changes of transportation mode, including stops, which are simply
points with low speed.

In addition to those mentioned above, several other solutions to the trajectory segmentation
problem have been proposed in literature, yet with objectives different from ours. For example,
cost-function based strategies were presented in [87][86], while clustering-based ones are intro-
duced in [97] [101]. All these approaches are focused on splitting a movement into homogeneous

parts, rather than discovering significant stops, which is the purpose of this paper.

In our solution we provide a segmentation method that, opposed to most of the approaches
mentioned above, is not based on fixed space and/or time thresholds to be fixed by the user —
this is the case, for instance, of [179, 196, 68, 203|. Instead, we aim to make the segmentation
parameter-free and also adaptive to the single user’s data, giving the opportunity to have different
kinds of segmentation over different users. Also, our approach is complementary to the STKW-
based one [164], as the latter aims to differentiate movements with different speed profiles,
including stops as a particular example, while we focus on stop timing and try to understand
which stops are actually significant (e.g. not too short) for the user. A similar work was proposed
in [41]. Here the authors proposed a new approach called Octal Window Segmentation (OWS)
for unsupervised trajectory segmentation. The intuition behind their approach is that when
a moving object changes behavior, this shift may be detected using only its geolocation over
time. So the work focuses on finding these changes only from the object’s coordinates using
interpolation methods to generate an error signal. This error signal is then used as a criterion

to split the trajectories into sub-trajectories.

3.1.3 Problem definition

We start by defining trajectory segmentation based on a spatial and a temporal threshold, in a

way similar to standard approaches in literature.

Definition 1 (Individual trajectory) Given a user u, her Individual Trajectory T, is the
sequence of n points T, = (p1,...,Dn) that describes her position in time, where each point
p € T, is defined as a triple p = (p.z,p.y,p.t), representing its spatial coordinates x and y
and the corresponding timestamp t. Moreover, points are in chronological order, i.e. V1 < i <

n.pi—1.t < p;.t.

Definition 2 (Pseudo-stop duration) Given an individual trajectory T = (p1,...,pn) and

14

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

a spatial threshold o, the Pseudo-stop duration associated to point p; is defined as SD(T,i) =
min{p;.t — p;.t|i < j < nAd(p;,p;) > o}, where d represents the geometrical Euclidean or

geographical distance.
Notice that the last point p,, will have SD(T,n) = min () = co.

Definition 3 (Segmented trajectory) Given a trajectory T = (p1,...,pn), a spatial thresh-
old o and a temporal threshold T, we define the (o, 7)-segmentation of T as T%" = (S1,...,Sm),
such that:

Vi<i<madl <s<e<n:S;={PsPst1r---;Pe)

U, set(S;) = set(T)
V1 <i<m.S; is maximal

where set(I) = {p € I}.

Conditions (i) and (ii) imply that the segments of the segmented trajectory of T form a
partitioning of the elements of T" in the strictly mathematical sense. Moreover, conditions (iii)
and (iv) state that all the points in a segment are movement points, i.e. their pseudo-stop
duration is smaller than the given threshold, excepted the last point. Therefore, each point in
T that has a high pseudo-stop duration will act as a split point, and corresponds to a distinct
partition in 777

Existing trajectory segmentation methods assume that the same rules and the same parame-
ters should apply to all moving objects. Since different objects can show very different movement
characteristics, the above assumption leads to make choices that on average fit best the dataset,
yet potentially making sub-optimal choices on single individuals.

Our objective is to overcome this limitation, making the segmentation process adaptive to the
individual and taking into consideration her overall mobility. Our problem statement extends
the traditional formulation of segmentation as a threshold-based operation, thus the core issue

is to find good parameter values for each user.

Definition 4 (Individual cut threshold problem) Given an Individual Trajectory T, and
a global spatial threshold o, the problem is to identify the temporal threshold T that yields the

optimal segmentation T7.

Since the number of moving objects can be very large, the process must be completely au-
tomatized and require no human intervention. In Section 3.1.4 we will introduce a simple and
effective approach to solve the problem and thus find a suitable value of 7 for each user. In ad-

dition, some basic guidelines to choose a value for the global spatial parameter will be provided.

15

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.1.4 Self-Adaptive Trajectory Segmentation

The proposed solution to the individual cut threshold problem consists in fixing the spatial
threshold to a global value (i.e. to be used for all users) and then in studying the segmentations
that we would obtain by applying different temporal thresholds. We will start describing the
process for choosing the temporal threshold, which is the central part of the solution, and later
discuss how the spatial one can be chosen.

When very small values of 7 are used, the segmentation obtained will contain a huge number
of very short segments, till the extreme case where each point forms its own segment. As the
threshold is increased, more and more segments will merge together, since some of the former
splitting points will fall below 7. The process is expected to gradually enlarge the trajectory
segments by first including simple slowdowns (i.e. not really stop points), then temporary stops
(e.g. at traffic lights), and so on.

Our approach consists in (virtually) monitoring such progression, and detect the moment
where an anomalous increase in the number of segments is observed, which represents a sort of
change of state. This follows the same kind of idea adopted in various unsupervised classification
contexts, such as the knee method for deciding the number k of clusters for the k-means algorithm,
or analogous solutions to choose the radius for density-based clustering (e.g. DBScan).

In our solution, rather than relying on visual or similar heuristic criteria, we will base the
threshold selection on a statistical test. In particular, we will adopt the Modified Thompson
Tau Test [22] which, basically, checks whether a given value fits the distribution of the rest of
the data or not. Since we look for anomalous values in a sequence, we apply the test iteratively,
comparing each value n(¢t) (the number of segments obtained with 7 = t) against the values n(t')
obtained for larger thresholds .

This process yields a set of thresholds that have an anomalous number of partitions as com-
pared to the successive thresholds. Among them, we simply choose the smallest one, thus deciding
to select the segments that emerge at the first change of state, also representing shorter and finer
granularity movements.

The procedure, named ATS (self-Adaptive Trajectory Segmentation) is summarized in Al-
gorithm 1. Step 3 collects the pseudo-stop durations SD of all the points ¢ that make up the
segment, and step 4 computes the frequency F' of each value, basically representing the number
of new segments obtained using that value as 7 w.r.t. the previous smaller thresholds. In our
implementation such frequency distribution is computed through smoothed histograms, grouping
values into bins of 1-minute width. Figure 3(left) shows the frequency distribution of a sample
trajectory, the vertical line corresponding to a possible cut point. The resulting set of segments
obtained is described in Figure 3(right) in terms of segments duration. Finally, step 5 selects
the frequency values that appear to be anomalous (based on the Modified Thompson Tau Test)
w.r.t. the frequency of larger thresholds, and step 6 returns the earliest time threshold that has

an anomalous frequency.

16

o o2
%}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

2 1O 8000

5 0.8 o

o 07 £ 6000

€ 0.5 pe

E 0.3 g 4000

s 0-2 < 2000

ol

0.0
0 250 500 750 1000 0 _
stop time (min) segment id

Figure 3: Frequency distribution of pseudo-stop durations for a user trajetory (left), and the
durations of the segments obtained using a specific threshold to cut the trajectory (right). The
threshold used corresponds to the vertical line on the left image.

Computational complexity

The cost of Algorithm 1 is dominated by step 3, since the computation of each pseudo-stop
duration (SD) could in principle require to scan all the remaining points of the individual tra-
jectory, thus yielding a O(n?) cost, where n is the size of the individual trajectory. However, in
practical applications the trajectory portion needed for each SD is relatively small, leading to a
quasi-linear cost. The remaining parts of the algorithm can be realized a linear time, including
the Modified Thompson Tau Test which can be computed for each points through incremental

updates.

Algorithm 1: ATS(T, o)

Input: Individual trajectory T, spatial threshold o

Output: Cut threshold 7

S =(SD(T.i) [1<i<|T|)

F = frequency distribution of S values (F'(a) = |{a € S}|);

C = {t|t € range(F) NTT(F(t), (F{")|t' > t)) =true}; //TT(a,B) = Modified
Thompson Tau Test of a vs. set B

6 return minC

N =

(31 BT N

Fixing the spatial threshold

In our approach, the threshold o represents the minimum distance between two (consecutive)
points that can be considered as a movement, and the temporal parameter is indeed measured
as the time needed to make a movement. A simple way to fix its value is to adopt the minimum
value that, according to the accuracy of our dataset, cannot be mistaken for a positioning error,
for instance due to GPS uncertainty. In our experiments we adopt road vehicle GPS traces

that are expected to have errors not larger than 10 meters, therefore we could fix o = 20 (the

17

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

worst case distance between two points that have the maximal error in opposite directions). We
decided to slightly increase it to 50 in order to stay on the safe side, also to take into account that
errors are slightly higher than average in urban centers, which is the application context where
our experiments are performed. Since we do not have data source from other kind of transport
(ships, planes, etc.) the selected threshold seems to meet our purposes. However, empirical
results confirm that the value of the global parameter o is not critical, as our approach shows a
low sensitivity to it. For this reason, the value we chose in our experiments (50 meters) can be
considered a good guess for generic vehicle GPS data. Other data sources with a higher spatial

uncertainty might require larger values.

3.1.5 Evaluation Measures for segmentation

The reconstruction error generally used for evaluating segmentation problems [18] just measures
how well each segment can be approximated with one value, and thus seems not to fit with
trajectory segmentation. Therefore, similarly to clustering evaluation, we propose three internal
evaluation measures [172]. Let T be the sequence of n points and Ts = (S1, ..., Sy,) its segmen-
tation. We denote with A; = duration(T) = p,.t—p;.t the total elapsed time from the first point
of py € T to the last point p, € T, and Ayg = length(T) = z;:ll d(pi, pi+1) the total distance
covered by the trajectory, computed by considering every couple of subsequent points in 7T'. Let
My =) g 1, duration(S;) be the sum of the segments’ duration, i.e., the time spent driving,
and My = > g cp, length(S;) be the sum of the segments’ length, i.e., the distance traveled.

Then, we define the following measures:
e time precision: TP =1— M;/A;
e distance coverage: DC = My/Aqy
e mobility f-measure: MFg = (1+ 3%)- TP-DC/((8?- TP)+ DC)

All measures range from zero to one. The higher the value the better the result. The objective
of these measures is to promote segmentations capturing long stops (time precision) yet also
covering most of the overall distance (distance coverage). These two objectives are conflictual,
since making stops longer reduces the number of points that contribute to the distance covered.
The mobility f-measure accounts for both aspects simultaneously. In the experiments we adopt
B = 0.25, which weighs time precision much higher than distance coverage by augmenting the
relevance of missing precision in stop detection. The reason is that i) it is relatively easy to
guarantee an high distance coverage, and i) the main focus of the paper is on the temporal

aspects of trajectory partitioning.

3.1.6 Experiments

We experimented the proposed self-adaptive trajectory segmentation approach (ATS) described

above over a real dataset of GPS vehicle traces. The results commented in the following refer to

18

o o2
%}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Rome London
10° 103
102 102
10! 10!
1094 . . n 1094 . . n
0 500 1000 1500 2000 0 500 1000 1500 2000
temporal threshold (sec) temporal threshold (sec)

Figure 4: Time threshold distributions for trajectories in Rome and London. The peaks show
the ideal thresholds to be set to build the trajectories.

2000 users of the area of Rome (Italy), and London (UK). The means and standard deviations
of the sampling rate for the users analyzed are 12194.67 + 22575.66 and 4385.76 + 9359.14, for
Rome and London respectively. The high values and their high variability is due to the presence
of several long time gaps, typically due to parking periods.

In the following we first analyze the personal temporal thresholds returned by ATS, then we
propose a quantitative and qualitative evaluation of the results for understanding the benefits
of the novel method with respect to existing ones. We compare ATS against the trajectory
segmentation method with fixed parameters proposed in [179] (FTStemp-thr). Moreover, we adopt
as baseline a random trajectory segmentation method that segments the sequence of points
T = (p1,...,pn) into m equal-length segments (i) with m randomly extracted between 2 and
n/2 (RTS1), or (#) with m set to the number of segments returned by the proposed ATS method
(RTS32).

Self-Adaptive Temporal Threshold

We observe in Figure 4 the distribution of the time thresholds selected by ATS for each user
(vertical axis represents value frequencies in log-scale).

Although every user has her own mobility behavior with its own mix of regular and more
erratic behaviours [136], we observe two clear peaks in the distributions for both Rome and
London. This means that with respect to ATS we mainly recognize two different types of users
regarding to the minimum duration of the stops. This supports the intuition behind our approach,
namely to have a self-adaptive procedure selecting a personalized best temporal threshold for each
user. Selecting one single threshold value for all the data might negatively affect the segmentation
of some users, partitioning their trajectories either too much or too little. The first peak is at
about 600 seconds (~ 10 minutes), while the second peak at 1200 seconds (~ 20 minutes). These

values correspond to the temporal thresholds that the ATS procedure uses to cut each trajectory.

19

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

‘method ‘ MF o5 TP DC ratios, #segms (avg £ std)‘

ATS 951 951 .981 0.049 837.34£854.52
FTS1g0 | 925 .996 .456 0.015 592.26 £652.78
FTS1200| 948 .947 .997 0.053 746.28 £ 733.96

RTS; 279 .268 .722 0.700 2094.85+ 2472.36

RTSo 124 118 877 0.883 899.59 £ 926.03

Table 1: Evaluation on Rome data. The first three columns show the measures adopted to test
our new approach. The fourth one reports the ratio between the average sampling period of
non-stop points over that of all points, and the last column is the number of segments.

‘method ‘ MFsy5 TP DC ratioy, #segms (avg £ std) ‘

ATS .955 .953 .999 0.047 433.915%513.715
FTSi20 | .958 .961 .944 0.040 1131.829+ 1431.810
FTS1200| 952 .950 .999 0.050 359.545 £ 410.606

RTS; | .267 .256 .695 1.007 2833.718 £ 4203.049

RTSy | .035 .033 .958 1.008 445.645 £527.969

Table 2: Evaluation on London data. The first three columns show the measures adopted to
test our new approach. The fourth one reports the ratio between the average sampling period of
non-stop points over that of all points, and the last column is the number of trajectories.

There is also a minority of users having values outside the two peeks.

Comparison of Evaluation Measures

In this section we compare the proposed self-adaptive trajectory segmentation approach with the
other methods taken into account. In Tables 1 and 2 we report the results obtained with all the
methods. The first three columns show the evaluation measures described above. The fourth
column shows the ratio between the average sampling period of movement points (thus discarding
the stop portions of the user’s trajectory) and the average sampling period of the full trajectory,
while in the last one the average number of segments with its standard deviation is given. In
general, we can observe that the best results were obtained with the ATs and FTS methods, both
for Rome and London. Analyzing the ratio (fourth column) we can see that values are low for
both ATS and the FTS ones, meaning that the long stops are ignored (i.e. they are recognized as
real stops) and just the short ones are considered. On the contrary, with the random approaches
the ratio is bigger because the algorithm function evaluates all stops in the same way. Looking
at the number of segments it is possible to note that FTs and ATS methods produce different
quantities, especially the FTS159 result produces less segments in the Rome case and much more

in London. About the last two approaches, the RTS; method works with a random number of

20

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Rome London
10

=
o

09

Mobility F1
=
[Le]
Mobility F1

o
oo

0.8

ATS FTS 120 FTSI1200 - ATS FFSIm FFSIu-}:

Figure 5: Boxplots for the MF 55 results. On the Rome data ATS yields better results than the
FTS solutions, while in London all three produce almost the same results. The variability of ATS
results is consistently smaller than the other methods, which is a sign of robustness.

segments, so it is normal that the final result differs from the others, while the RTSy takes as
number of segments the same of the ATS approach so we aspect to achieve similar results.

For the evaluation measures we can see that our new approach reached the goal we expected,
i.e., yielding a quality of results which is always comparable or higher than fixed-threshold
approaches and more robust. Indeed, for both Rome and London the values obtained by ATS
are compatible with the FTS results, even better in the MF 55 for Rome and in the distance
coverage for London. In particular, in the Rome example, having a high MF 55 values means
that also the time precision and the distance coverage are well correlated in a way that produce
a satisfying result. If we see the FTS15¢ result we can note that the time precision is high but
the distance coverage is very low because the algorithm builds short trajectories with few points.
An analogous reasoning can be done analyzing the FTS1299 method which produces an excellent
distance coverage score but a lower time precision. Our solution reaches a good balance, thanks
to its self-adaptive characteristic that allows to control and correct the trajectory fragmentation,
and all its evaluation measures are always either the best or the second best of the group.

To have a better understanding of the quality of our new approach, the distribution of MF o5
values for the different approaches on the two datasets is shown in Figure 5 through a boxplot
visualization. For the Rome case we can observe that with the ATS approach the median value
is the highest (closest to 1) and the inter-quartile range is smaller than the other two, meaning
that we have a smaller variabiliy and thus more robust results. The London case appears to be
different, and the best MF o5 values are obtained with the FTS129, with a median similar to ATS

and a slightly narrower box. This leaves room for future improvements of our methodology.

Comparison of Segmentation Statistics

In the following we analyze other statistical indicators on the trajectory segments extracted by
the various methods. The next plots want to show other significant features for the segmenta-
tion problem in order to compare their distribution and try to infer something more about the

segmentation. In addiction discovering some hidden correlations between trajectory features and

21

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Rome London
[ATS [ATS
1000 1 1000 1
2 2
1H] M)
1] 5]
> >
o 500 o 500
= =
0- 7 ; : T 0- 7 ; .
0 20 40 60 80 100 0 20 40 60 80 100
avg nbr points per segm avg nbr points per segm
Rome London
N FTS51200 FT5120 BN FTS51200 FT51z20
1000 1000 1
bl bl
@ @
%] %]
3 3
o 500 o 500
c c
0 : . . ; 0 #
0 20 40 60 80 100 0 20 40 60 80 100
avg nbr points per segm avg nbr points per segm
Rome London
RND, . RND; RNDy . RND,
1000 1 1000 1
2 2
Q Q
%1} %]
= =
S 500 5 500
= =
0- : . . . 0- . . ;
0 20 40 60 80 100 0 20 40 60 80 100
avg nbr points per segment avg nbr points per segment

Figure 6: Distributions of average number of points per segment in Rome (left) and London
(right).

the segmentation approach could lead to a better understanding of the problem and highlight
other relevant aspects. In Figure 6 we report the distributions of the average number of points
per segment for Rome and London. For all methods, the majority of segments have less than
20 points, probably meaning that most of the trips take place within the city. However, in the
distribution tails some long trajectories with more points emerge. We observe that the distribu-
tion peaks of ATS place somehow in between the peaks of the two FTS variants (though closer
t0 FTS1200, especially in London) thus finding a trade-off between them. Moreover we can see
that London and Rome distributions are different: London has a wider distribution than Rome,
meaning that the variety of trips is greater in London.

In Figure 7 are displayed the distributions of the average number of segments per user. In
London most of the users have less than 20 trajectory segments. The peak of the distribution is

between 5 and 10 segments. Between 30 and 100 segments the distribution remains stable at a

22

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Rome London
150 | e ATS 150 | m ATS
5 5
v 100 4 u 1004
0 0
& 8
< 504 = 504
0- 0-
0 20 40 60 80 20 40 60 80 100
number of segments number of segments
Rome London
150 | B FTS1200 FTS120 150 | e FTS1200 FTS120
5 5
n 100 1 u 100 4
= =
8 8
< 504 = 504
0- 0-
0 20 40 60 80 20 40 60 80 100
number of segments number of segments
Rome London
150 RND; mmm RND; 150 | RND; == RND;
&a bl
% 100 ? 100 1
= =0
a s
[= < 504
0 A
20 40 60 80 20 40 60 80 100
number of segments number of segments

Figure 7: Distribution of the number of trajectory segments over Rome (left column) and London
(right column) with each segmentation method (on the rows, grouped by family).

small value larger than zero. In Rome we observe a similar result with a peak between 15 and
20 trajectories. Also in this case, the peak of ATS distribution tends to stay in the middle of the
FTS ones.

In Figure 8 we compare the distribution of average length and average duration of the seg-
ments returned by ATS (left) and FTS (right) for the area of Rome. With the ATS method the
peak value is around 10km, thus confirming that most of the trips are short, and likely to take
place around the city. With the FTS methods the peak position depends on the temporal thresh-
old imposed: with a threshold of 1200 seconds the average distance is similar to ATS, while with
120 seconds it becomes lower and close to 5 km. The results for the RTS methods are omitted,
since their plots are very similar to the FTS ones. Also, the plots in London show exactly the

same kind of behaviour observed on Rome.

23

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Rome Rome
ATS FTS120 W FTS1200

1000 1 1000 1
2 2
T T
1] 5]
> >

o 500 o 500
= =

0= T T ; ; y 0-

0 10 20 30 40 50 20 30 40 50
avg length avg length
1000 Rome 1000 Rome
800 1 ATS FT5120 BN FTS1200
© w7504
§ 200 § 500

*‘é 400 4 *‘é

200 | 250

0 T 1 1 1 0 -

0 1000 2000 3000 0 1000 2000 3000
avg duration avg duration

Figure 8: Distributions of the average length (top) and duration (bottom) for the trajectory
segments returned by ATS (left) and FTS (right) for the area of Rome.

In terms of segment duration, ATS yields a distribution with a peak around 1200 — 1500
seconds (~ 20 — 25 minutes). With the FTS methods the peaks change: for FTS1a0 the peak is
around 500 seconds while for FTS129¢ the peak is centered in 1800 seconds. Also in this case, the

results on London are very similar and omitted here.

Case Study

In this section we show qualitatively on a case study the effectiveness of ATS with respect to FTS.
In Figure 9 we report the segmentation returned by FTS1209 [179] (left) and by ATs (right), the
user is travelling from south to north. FTSi200 [179] returns two trajectories (green and blue),
while ATS returns three trajectories (green, orange and blue). The second line of plots report the
inter-leaving time between consecutive GPS points. The colors match the trajectory segments,
while stops are highlighted in red. We observe how ATS identifies the short stop of less than 15
minutes at the service area similarly to the subsequent longer stop. On the other hand, FTS1209
considers the first stop as part of the green trajectory. The map in the bottom line of Figure 9
shows the service area which is very close to the GPS points reported on the bottom right corner
of the map. This case study highlights how various existing stops under a certain predefined
threshold can be missed with a segmentation approach like FTS, while a more data-driven and
self-adaptive method like ATS is able to take into account specific user behavior and return a

better result.

24

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

, Corciano
BastiaUmbra® *

. Corciano
Bastia Umbra® *

Assisi .
. Assisi

e, * Foligno
ano.; : STl * Foligno ...

.
‘ Marsciano . i
o . “Tod : Marsciano
. . f .
S';:)Ieto " Tod * Spoleto
.Narni"_,-"

JRieti . Vitert

‘.Tarq.inla ' g

"~ vvecchia .
tidmialvecc e M’nterotondo

20) — traj1 —— stop1 201 — trajl —— stop 1
— traj 2 traj2 ~—— stop?2
15{ —— traj 3

elapsed time
=
[=]
elapsed time
=
o

° Area‘clj Servizio,
GiovelOyest <

Service
Area

Azienda Agricola @& .~
Sambuco di Llaura:®*

o) Anne-Mette O

\ [E35
B “WPoint]
255
2

Figure 9: Trajectory segmentation returned by FTSis00 (left) and ATS (right). The user is
travelling from South to North. Top: spatial representation showing the trajectory segments.
Center: temporal segmentation showing the inter-leaving time between GPS points. Bottom:
zoom on the service area highlighted in the top maps where the user probably stops for ~ 15
minutes. Best view in color.

3.1.7 Adaptive location extraction with TOSCA

Based on the set of points where a user stopped, our aim is to identify subsets that most likely

represent the same place. Following [66], we formally define the Locations Detection Problem

25

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

(LDP) in three steps:

Definition 5 (Location set) Given a set of stop points P, a location set L for P is a parti-
tioning of P into disjoint sets: VI € L: I C P, e l=P and [,I' € LAL#T = 1IN = 1.

In general, the locations can be either provided as input, to be considered as ground truth,

or they can be inferred (detected) directly from the stop observations through algorithms.

Definition 6 (Real and Detected Locations) Given a set of observations P we denote the
real locations associated to P as Lp = {L1, La, ... Ly}, and the locations inferred (detected) from
P through any algorithm with Dp = {D1, Ds,... Dy}.

The Locations Detection Problem, then, is simply defined as the task of inferring locations

as close as possible to the real ones, across all the users:

Definition 7 (Locations Detection Problem) Given a set of users U and their observations
Pu = {Pu}ucu, the Locations Detection Problem (LDP in short) consists in producing for each

set of observations P € Py a partition Dp that is similar to the corresponding real partition Lp.

We consider the most common case, where no real locations are known a priori, and therefore
the problem requires to perform an unsupervised learning. In particular, it can be seen as a
partitive clustering task, and is generally solved in literature through the adoption of a clustering
algorithm. The result is a set of clusters of observations, which correspond to the detected

locations, i.e. Dp.

TOSCA
The TOSCA approach can be summarized as the combination of two main steps:

1. extract (several small) clusters and corresponding medoids through center-based methods.

In particular, the X-Means algorithm was selected through empirical evaluations;

2. cluster the medoids through a Single Linkage hierarchical algorithm. Stop the iterative
clusters aggregation (or, equivalently, cut the dendogram resulting from a complete run
of the algorithm) through a statistically-determined threshold on the increase of distance

between the clusters to be merged at each iteration.

The input of the method are the set of stop observations P of a user and a cut-criteria.
The first step of TOSCA consists in clustering P with X-Means, extracting the corresponding
medoids M. X-Means [145] is a fast and statistically founded refined version of K-Means. Given
an interval [kyin,kmas] it finds the set of clusters which minimizes the Bayesian Information
Criterion (BIC) by using smart centroids and values of k. In the general case, the parameters
can be simply set t0 kpin=2 and kpqe,=|P|-1, while smaller intervals can be used if knowledge

about k is available, to reduce the search space and speed-up the computation.

26

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

The second step executes a Single Linkage clustering on the set M of medoids. Single Linkage
[163] is a standard agglomerative hierarchical clustering methods that builds a hierarchy of
clusters by progressively joining the two closest elements at each step. The resulting hierarchy is
called dendrogram, and it shows the sequence of cluster fusions and the distance at which each
fusion took place. The final clustering is generated by cutting the dendogram ® at distance
(height) dist according to the cut-criteria. The dendogram can be mathematically represented
by a list ® = [do,d; ...d|a—-1] of the distances computed by Single Linkage to aggregate the
clusters, i.e. d; is the distance at which two clusters are aggregated at iteration 1.

The cut-criteria considered in the algorithm comes from the outlier detection theory. The
idea behind this choice is the fact that empirical experiments show how the differences between
consecutive distances in ® contain sudden spikes indicating the change of trend in the aggrega-
tions of the clusters. Among various alternatives for identifying such spikes, the Thompson Tau
Test was chosen, which takes into account the mean p and standard deviation o of a distribution,

and provides a statistically determined rejection region.

3.1.8 Impact on location extraction

The combined effect of the flexible trajectory segmentation method and the successive location
extraction is expected to yield a different set of locations w.r.t. previous solutions based on
fixed thresholds. In particular, taking as reference the typical fixed threshold of 1200 seconds
(FTS1200), Figure 4 shows that the flexible solution finds similar values in ~ 40% of cases, and
smaller ones in the others. That suggests that the new method might find more significant stops
and therefore identify more locations. Figure 10 shows the results of a direct comparison of
the number of locations found by the two approaches, expressed as relative increase of locations
gained by our method.

The plot summarizes the results obtained on 1176 vehicles belonging to Pilot 1 dataset,
having a variable number of observed points that ranges from 4429 to 11061. As we can see
from the figure, there is a large number of cases where the differences are relatively small, in
smaller quantities also negative, and then a group where the novel method adds a large amount
of locations.

Overall, the average relative increase of our method is 0.183621 (i.e., 18.36%), meaning that
the very significant impact on the trajectory segmentation we saw in previous sections does not
completely translate into a large variation on the locations found. While a definite explanation
for that is still under investigation, the current hypothesis is that two contrasting effects cancel
out mutually: on one side, more stops are found, several of which represent locations visited oc-
casionally that would be otherwise lost; on the other hand, sparsely covered locations sometimes
are mistaken by the algorithms into two or more separate ones, and having more observations
for that (real) location results into merging the different pieces, thus reducing the final number

of locations.

27

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

10¢

=

Frequency

1ot

a
10¢ I . ‘
] 10 20 £ 40
Relative increase of # of locations

Figure 10: Relative increase of number of locations extracted w.r.t. FTS1200-

3.1.9 Conclusion

The algorithms presented in this section form a user adaptive method for solving the location
extraction problem, a very common and useful task in mobility data mining. The experiments
show that it is possible to derive user-adaptive cut thresholds for the trajectory segmentation
step, improving the performances over less flexible solutions. Also, the more adaptive extraction
of stops allows to improve the location extraction process, in some cases significantly increasing
the number of relevant locations discovered in users that have lower personal stop durations,
which would be otherwise lost by other methods.

While the results are satisfying and the tool showed to be of practical utility, especially in
the Track&Know context, several improvements are currently being explored. Among them, we
mention a possible trajectory segmentation refinement which is not only user-adaptive, but also
location-adaptive, thus considering the fact that a stop at different places might require time
intervals of different duration to be considered a significant stay — and thus a trajectory cut
point. Also, we are exploring the idea of using the context around the (moving) user to improve
results, for instance looking at the mobility of other users and the geographical area surrounding
the candidate stops.

Finally, we remark that this component provides a fundamental tool for analyses aiming to
model the mobility of single individuals. That is in particular the case of most of the tools
developed in Task 4.2 of the project, and reported in deliverable D4.2: beside using the location
extraction tool for building Individual Mobility Networks (the core component of the methods
in Task 4.2) the deliverable provides a data flow schema and a platform integration and testing

section that also includes trajectory segmentation and location extraction as atomic components.

28

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.2 Analysis of electrificability of trips

In summary:

e (eneric question addressed: Measure electrificability of a trip.

o Track&Know specific question: Measure the battery consumption of a route and of a daily

sequence of trips.

e Novwelty / Advantage over existing methods: Exploits detailed information of real GPS

trajectories.

e FExperiments conducted: Testing on a Track&Know Pilot dataset with quantitative evalu-

ations.
e Type of analytics: Descriptive analytics.

o Automation / TRL: TRL 4 (automated tool, tested on real data for simulation-based

applications)

e FEaxtension to other domains: None; the tool is specific for vehicle mobility data.

Electric mobility is one of the main advocated solutions for making urban environments
ecologically more sustainable, improving the quality of life of citizens. However, most users are
very little familiar with what driving an electric vehicle (EV) really means and what it might
change in their daily life if they replace their fuel-based vehicle with and electric one. This lack of
knowledge causes several worries to the average potential user, even though its many advantages
for the environment are clear. One of the biggest differences between a fuel-powered vehicle
and a battery-powered vehicle lies in the reduced autonomy: while high-profile EV models have
performances similar to fossil-fuel cars, average EVs have a range in the order of 200 km, which
makes the need for recharging more frequent. Also, the time required to fill a fuel tank is usually
less than a quarter of an hour, while a stop to recharge the battery of an electric vehicle can
easily take more time, up to some hours, depending on the capacity of the battery and the type
of recharger. Finally, at the present the recharge infrastructures are much less developed than
fuel ones, thus arising further concerns about the capability for a user to satisfy their mobility
needs.

In this work we developed a tool that provides basic functionalities for addressing some of
the concerns mentioned above. In particular, we aim to evaluate whether the existing mobility
demand of a user could in principle remain sustainable with an EV, i.e. whether their trips
could be performed exactly as they are (same origin and destination, same route, same speed)
without running into battery shortage. We realize this by analyzing the recorded trajectories

that a user performed with a fuel-based vehicle and estimating the battery consumption (in

29

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

KWh) for each trip in input. Since the output is mainly estimating consumptions, it can be seen
as an enrichment process that assign a measure to each trip. In this section we also make use of
this basic tool to simulate the whole history of the user, thus considering how the consumption
of each trip adds up to the previous ones, assuming that the vehicle can recharge the battery
whenever it stops for a significant amount of time either at home or at a recharge facility.

The approach described in this section is also linked to tools developed within Task 4.2 and
having similar objectives, which are presented in deliverable D4.2. While the methods presented
here mainly focus on simulating the single trip as it was performed by the user, the other solution
performs a more complex analysis of the user mobility as a whole, and is based on a mobility data

representation named Individual Mobility Network, also considering a wider range of scenarios.

3.2.1 Input movement data

The methodology assumes to have as input the traces of vehicles equipped with GPS devices,
which record the GPS position and other related information, referred to as observations. Each
observation typically contains the following information, which also match very closely the

datasets used in the Track&Know pilots:

e id: anonymous vehicle identifier

e ts: timestamp, composed of date and time

e lat, lon: the coordinates of the position, expressed as latitude and longitude

e speed: the instantaneous speed of the vehicle

e heading: the direction of the car (not used in this work)

e quality: quality of position estimate, based on the number of satellites connected
e status: the status of the car engine (just switched on, switched off, running)

e delta: spatial distance travelled from the last observation

For practical reasons, like bandwidth limitation of communication costs, the on-board devices
record the observations and send them to the data collector in a non-continuous way, by applying
some spatio-temporal filters to reduce the amount of data transferred, meaning that not all the
points of the trip are recorded. For this reason the stream might contain low sampling rate data

(e.g. between 10 to 60 seconds between each observation, in some cases even longer).

3.2.2 Preprocessing and elevation enrichment

The initial stream of data can contain observation with poor localization accuracy, marked
by appropriate values in the quality attribute. Moreover, the successive steps of our process

require to know the altitude associated to the recorded positions, which is an infomation missing

30

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

. Original obs.
. Discarded obs. (low quality)
O Interpolated obs.

Figure 11: The reconstruction and altitude enrichment process

from most GPS tracking devices. Therefore, the following steps are performed, before the real

computation:

e As first step, our tool excludes all the positions having low quality connection with the
satellite, e.g. in experiments with Pilot 1 data, it was decided to keep only points with

quality=3, which is the highest, and exclude all lower values.

e Then, a simple trajectory reconstruction is performed, which groups observations in single
trips of the users according to the status information and spatial and temporal constrains —
indeed, the status field alone is not always reliable. Also, in order to obtain a more accurate
simulation the trajectory is also "completed" using a simple interpolation to guarantee a

temporal granularity less then 2 seconds between two consecutive points.

e After the cut of the traces into trajectories the module extracts the elevation of the points
from official cartography data using satellite images. This is a very important and time
consuming task because the simple geo-localization is not enough for the simulation of the
vehicle cars, due the fact that the degree of inclination of the road strongly affects the energy
consumption, as better discussed in the next sections. To calculate this information, the
data provided by the CGIAR Consortium for Spatial Information (CGIAR-CSI) website
is used, which contains the measurements obtained by the Shuttle Radar Topography
Mission (SRTM) for the Digital Elevation Data, representing the most accurate data source
available to date. The data is stored as GeoTIFF, a multi-layered TIFF image that holds
altitude information for each pixel. The module will request automatically the set of tiles
(90m x 90m) covering the spatial area where the trajectories are located and will extract
the information point-by-point, attaching it to the existing bi-dimensional points. The

process is visually summarized in Fig.11.

31

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Figure 12: The physical forces to which a vehicle is exposed during the movement

3.2.3 Consumption estimation

Our estimation of battery consumption for each trip of the user is based on a instantaneous
consumption model introduced in [184] and recommended in [8] as a good trade-off between
realistic simulation and eflicient computability. The model considers all the physical forces to
which the vehicle is constantly exposed in order to estimate the amount of electric power needed
to reach a certain speed, which are illustrated in figure 12.

The model is general and can be adapted to each type of vehicle changing specific parameters.

In details it considers:

e Rolling resistance: F,, = R(Mcqr + Mg)gcosa. Where R() Is the rolling resistance coeffi-
cient of the tire, M,.4,|kg| is the mass of the vehicle, M [kg| is the mass of the driver, g=
9.81 [m / s2] is the acceleration of gravity and /alpha [rad] is the angle of the surface on

which the machine is located with respect to the horizontal plane.

e Aerodynamic resistance: F, = %ACdp’uz. Where A[m?] is the area of the front surface of
the vehicle, Cy is the aerodynamic drag coefficient, p= 1.2041 |kg / m?] is the density of
the air at 20°C and v[m/s] is the vehicle speed.

e Horizontal component of gravity: Fp. = (Mear + My)gsina
e Inertia: Fj, = 1.05(Mqr + Mg)a. Where alm/s?] is the acceleration of the vehicle.

Hence, the total pulling force can be expressed as Fy,; = Fr.p + F, + Fpe + Fj,. Mechanical
traction power is the product of the traction force and the average vehicle speed. It depends on
the engine power and transmission efficiency and is: Pi,; = Fyotv. This power is transferred to

the wheels, and assuming an efficiency of the gears, the resulting power is:

PtOt

PengineOut =
Ngear

32

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

The efficiency of the engine is then considered and the power that enters is:

P _ PengineOut
engineln —
nengine

The auxiliary power P,,., which represents the power necessary for lights, air conditioning, radio,
and other electrical appliances in the vehicle is considered as: Peonsarov = Penginern + Pauz-

During breaking, cars must remove its kinetic energy converting it into heat. Electric Vehicles
have regenerative breaking that can recover a fraction RgenRatio Of such energy to recharge the
battery. In this case the mechanical power is negative, P <0, and this variable will be weighted
by the regeneration factor and flow back from the wheels to the motor (working in generation
mode) and to the battery: Piereqg = RgenRatioPre-

The next step is taking into account the transmission efficiency. The power going out from this
block to the electric machine-power electronics block is given by: Pregengineout = NgearPreReg-
The power going out from the electric machine-power electronics block to the battery is given
by PregEngineln = Nengine PregEngineout, and the final amount of energy is thus: PfinaiBattery =
Peonsnvov + PregEngineln.

Since detailed information about the type of vehicles to simulate are usually not available,

by default a medium class car model is considered. The vehicle parameters are the following:
e Cross section area 2.27 m?
e Machine weight 1521 kg
e Driver weight 90 kg
e Aerodynamic drag coefficient 0.29
e Rolling resistance coefficient 0.012
e Regeneration ratio 0.25 default / 0.35 in eco mode
e Battery capacity 24kW
e Low battery limit 8-10%
e Transmission efficiency 0.95
e Machine and electric motor efficiency 0.98
e Battery charging efficiency 0.95
e Battery discharge efficiency 0.98

These settings can be easily changed by modifying a configuration file, where all parameters are
listed.

33

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

The resulting model for charging and discharging [184] of the battery must consider the energy
transmission efficiency coefficients: 7cparge a0d Ngischarge, thus the two operations produce energy
as:

Ebat _ PfinalBatteTy-At

Tldischarge

Epot = nchargepfinalBattery~At
Therefore the variation in capacity will be:

Ebat

CAP
Ebat

ASoc =

where Eglfp is the maximum capacity of the battery. Considering the variation as function of

the time ¢ the following model is obtained:
SoC[t] = SoC[t — 1] — ASoc — dseifyisch
where dge1f,ischn is the self-discharge losses.

3.2.4 Model Implementation and output format

The implemented module estimates the percentage of battery used during each trip and, con-
sequently, it can be used to understand and estimate how much a car needs to be recharged at
the end or during the day. We considered two ways to recharge the car: (i) the machine stops
near a charging station or (ii) when it returns home. The charging stations are provided to the
module as list of geo-locations (may be an empty list, in this case the module will consider only
the second option).

Whenever a trajectory end (with a stop) the module will calculate the distance between the
point where the vehicle stopped and the closes charging station, if the vehicle is located near
one of these areas, it will consider the stop time as recharging time until the start of the next
trip of the user. Notice that in this tool we do not consider changes of routes to intercept
recharge stations in case of need. That would require trip planning capabilities that go beyond
the objectives of this module, and are instead part of the whole-user simulations developed in
Task 4.2 (see deliverable D4.2 for details).

In the case of the home charging we consider the time spent by the user in its home location
(here simply computed as the place where he stops for the night) which usually leads to a full
recharge of the battery.

The output of the tool is a table that reports useful statistics of each trip, including battery
consumption of the single trip, and cumulative information within the day. A sample result is

shown in Fig.13, where the attributes are the following:

e user id: the anonymous identifier of the vehicle;

34

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

imerld progressve number start fime mart fat startlon endtime
4 Integer Intzger har. ing [; dowiode precsh Ft haras

endlst endkn resial charge before | consume totaldistonce residualcharge afer recharge S recharge amcund trajectory overfion_flag
z 120 e
1 1610 101 42 41ES4T2 10ESRATI OO

<l double prech: deuble precision double r double preckic doubis precision =malint double precision smaline

43850272 10.5147EE 103 131 246 9858 o [o

1610 4385024 A3EEE86 10SSTO0E 863 153 258 9716 o

0
100 Byt SARSIIGE 10515004 At 172 36 9544 [1
YT A% AREAD .04 184 %83 axg i

1616

a
A

5 1610 ATARETTD 103 7 a5 B33
1

1610 A3EGEE 105 5833 162 257 2671

1610 2671 175 244 9457

o 1
o o

2 [0

(1 510 557088 o 0
1 0

178 354 CERE)

q 1610 519 as 20 924

10 1610 ALRAD A STAREAM 1055703 9254 127 276 a6

1 1610 4385544 10SSTIN A3EIEE IOEITE 103 246 &7 754

12 1610 43836562 1050793 43851248 10511672 o5 429 1248 9334

13 10 e

324 178 an 9148
11 1810 10 160 249 a2

15 1610 19 154 365 AR AE

A3 3R

1
o
0
0
1
1
1
o

16 1610 07442 103 a4 a7 a5 E

17 1610 43855784 1055T0R 6.5 235 455 EEES

Figure 13: The resulting enriched trajectories with the estimation of the battery consumption.

e progressive number: progressive number of the trip (reset every day);

e start time, start lat, start lon: time and location where the trajectory started;
e end time, end lat, end long: time and location where the trajectory ended;

e residual charge before: status of the battery before the trajectory started;

e consume: consumption of the battery for the trajectory;

e total distance: the trajectory length;

e residual charge after: status of the battery after the trajectory;

e recharge flag: the flag is different from 0 if the battery is recharged at the end of the

trajectory (1 at home, 2 at a charge station).
e recharge amount: considering the stop time, the amount of battery recharged;

e trajectory overflow flag: this flag is 0 if the trajectory is feasible with the battery and the

consumption simulated (i.e. the vehicles does not run out of charge), 1 if not.

3.2.5 Tests and case study

The dataset used to test the tool belongs to Pilot 1 of the Track&Know project, and contains
21.577.813 observations that, after the preprocessing, form 2.341.162 trajectories belonging to
2.294 distinct vehicles. The trajectories are located in Tuscany (Italy) in a period of 3 months.
In the following we first present qualitative results of the simulation (our case study), and then
provide scalability tests of the tool.

The result of the computation with only the home recharge is shown in Fig.14, where only
the 5% of the trips run out of battery considering the sequence of trips and cumulating the
daily battery consumption, meaning that the mobility is more than feasible in this area with

electric cars; on the other hand, it is clear that this 5% is distributed across the majority of the

35

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Trajectories

with overflow JWVVWW\W’W/WWW
5% 0%

Trajectories

without

overflow
95%

Figure 14: Percentage of simulated EV trajectories in battery overflow (left) and its distribution
across users (right).

users, meaning that the recharge infrastructures (charge stations) need to complement in-house

recharges in order to make EVs a complete replacement of fuel-based vehicles.
450
400
350

300

Time (Sec.)
N
8

[
o
(=]

150
100

50

-0 50000 100000 150000 200000
Number of Observations

Figure 15: Computation time of EV trajectory simulation over different dataset sizes

Scalability tests

To test the performances of the module we performed several experiments increasing the size of
original observations, with results reported in Figure 15. It is worth to consider the fact that
the main bottleneck in the process is the query to the GeoTIFF data, consisting in a picture in
high definition (6001 x 6001 pixels each tile of 90m x 90m). Moreover due the size of the tiles

it is impossible to load in memory all of them so the module will keep in memory a buffer of

36

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

them during the process. For this reasons, the computation time grows less than linearly, since a
larger number of trip simulations means a better usage of buffered GeoTIFF tiles, which dominate
the cost for small size tests. The cut-off point in our setting was around 100000 observations,
after which the cost becomes linear, with an approximate average execution time of 0.001s per

observation and 0.0092s per trajectory.

Tool usage and integration

The method basically analyzes each day of each user separately, therefore a high parallelism of
execution can be implemented. In case of streaming data the tool can be used in combination
of a dispatcher separating the data into partitions, for instance by user, and have each partition
processed by a separate instance of the tool (worker) without need to communicate with the
others, as shown in Fig.16.

Database

Worker 1

Worker 2

Data

Data Collector Dispatcher

Worker n

suolnebalbby

Query
B B

& Soste Ranking:_Frequena

Figure 16: Usage and integration schema of electrificability simulation

The tool can be used as an enrichment step of trajectory data, therefore successive anal-
yses can be easily accommodated. For instance, Figure 16 shows its application in a visual
platform able to display the distribution of the stops, e.g. to evaluate possible good candidate

locations for new charge stations. The process can be also iterative allowing the analyst to mod-

37

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

ify /adding/removing the stations and analyzing the changes, which simply requires to update

the file containing the list of known recharge stations and their location.

3.2.6 Conclusion

This section introduced a method to simulate the battery consumption of an EV that moves by
perfectly following the real trajectories of a user, exploiting a state-of-art consumption model.
Performance results show a quasi-linear cost, especially for medium and large simulations, making
it applicable to big datasets. Also, a preliminary case study suggests that the rate of daily trips
that could be sustainable with a basic EV model is very high, thus confirming the viability of
EV as a replacement of standard cars. Finally, an alternative, more sophisticated simulation
approach is developed in deliverable D4.2 “Analytics for individuals’ mobility networks”, which
exploits the same consumption model while building the simulation on top of an Individual
Mobility Network model, allowing a more complete analysis of the user and the study of various

scenarios.

3.3 Distributed Sub-trajectory Clustering

In summary:

e (eneric question addressed: Discover clusters of sub-trajectories.

o Track&Know specific question: Identifying clusters of moving objects can have several

applications, such as fleet optimization and predictive analytics.

e Nowelty / Advantage over existing methods: Previous methods mainly focus on clustering
entire trajectories, which might lead to loss of patterns that might exist for shorter peri-
ods, and also our parallel algorithms are designed and implemented in MapReduce so our

solution scale gracefully for Big Data.

e Experiments conducted: Quality and performance/scalability tested against a 27GB dataset
from SIS.

e Type of analytics: Descriptive analytics

o Automation / TRL: TRL level 3 (proof-of-concept implemented and tested, so we are
between TRL 3 and 4)

e Faxtension to other domains: The method is applicable for other types of mobility data,

e.g., maritime and aviation.

38

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Trajectory clustering is an important operation of knowledge discovery from mobility data.
Especially nowadays, the need for performing advanced analytic operations over massively pro-
duced data, such as mobility traces, in efficient and scalable ways is imperative. However,
discovering clusters of complete trajectories can overlook significant patterns that exist only for

a small portion of their lifespan.

3.3.1 Introduction

The unprecedented rate of trajectory data generation, due to the proliferation of GPS-enabled
devices, poses new challenges in terms of storing, querying, analyzing and extracting knowledge
from big mobility data. One of these challenges is cluster analysis, which aims at identifying clus-
ters of moving objects (thus, unveil hidden patterns of collective behavior), as well as detecting
moving objects that demonstrate abnormal behaviour and can be considered as outliers.

The research so far has focused mainly in methods that aim to identify specific collective
behavior patterns among moving objects, such as [95, 90, 83, 130, 104, 103, 173, 201, 43]. How-
ever, this kind of approaches operate at specific predefined temporal “snapshots” of the dataset,
thus ignoring the route of each moving object between these sampled points. Another line
of research, tries to identify patterns that are valid for the entire lifespan of the moving ob-
jects [123, 141, 34, 162]. However, discovering clusters of complete trajectories can overlook
significant patterns that might exist only for some portions of their lifespan. The following

motivating example shows the merits of subtrajectory clustering.

Example 1 (Subtrajectory clustering) Figure 17(a) illustrates six trajectories moving in the xy-
plane, where each one of them has a different origin-destination pair. More specifically, these
pairs atre A - B, A—>C, A—- D, B— A, B— C and B — D. These siz trajectories have
the same starting time and similar speed. A typical trajectory clustering technique would fail
to identify any clusters. However, the goal of a subtrajectory clustering method is to identify 4
clusters (A — O (red), B — O (blue), O — C (purple), O — D (orange)) and 2 outliers (O — A
and O — B (black)), as depicted in Figures 17(b).

The problem of subtrajectory clustering is shown to be NP-Hard (cf. [2]). In addition, the ob-
jects to be clustered are not known beforehand (as in entire-trajectory — from now on — clustering
algorithms), but have to be identified through a trajectory segmentation procedure. Efforts that
try to deal with this problem in a centralized way do exist [98, 144, 2], however, applying these
centralized algorithms over massive data in a scalable way is far from straightforward. This calls
for parallel and distributed algorithms that address the scalability requirements. In this context,
one challenge is how to partition the data in such a way so that each node can perform its com-
putation independently, thus minimizing the communication cost between nodes, which is a cost
that can turn out to be a serious bottleneck. Another challenge, related to partitioning, is how
to achieve load balancing, in order to balance the load fairly between the different nodes. Yet

another challenge is to minimize the iterations of data processing, which are typically required

39

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

-

A A

Figure 17: (a) Six trajectories moving in the xy-plane and (b) 4 clusters (red, blue, orange and
purple) and 2 outliers (black).

in clustering algorithms. Interestingly, there have been some recent efforts towards mining mo-
bility data in a distributed way, such as mining co-movement patterns [43], identifying frequent
patterns [162] or adapting already existing distributed solutions to trajectory data [34], yet no
approach for distributed subtrajectory clustering exists as of now.

Motivated by these limitations, we present the Distributed Subtrajectory Clustering (DSC)
problem [168], which has not been addressed yet in a scalable and efficient way. Moreover, salient
features of our approach include: (a) the discovery of clusters of subtrajectories, instead of whole
trajectories, (b) spatio-temporal clustering, instead of spatial only, and (c) support of trajectories

with variable sampling rate, length and with temporal displacement.

3.3.2 Related Work

In recent years, an increased research interest has been observed in knowledge discovery out
of mobility data. Towards this direction, several co-movement pattern discovery and trajectory
clustering methods, which are directly related to our work, have been proposed.
Co-movement patterns. One of the first approaches for identifying such collective mobility
behavior is the so-called flock pattern [95, 185]. Inspired by this, a less “strict” definition of flocks
was proposed in [90] where the notion of a moving cluster was introduced. There are several
related works that emerged from the above ideas, like the approaches of convoys [83, 130],
swarms [104], platoons [103], traveling companion [173] and gathering pattern [201]. However,
all of the aforementioned approaches are centralized and cannot scale to massive datasets. In
this direction, the problem of efficient convoy discovery was studied both in centralized [130] and
distributed environment by employing the MapReduce programming model [129]. An approach
that defines a new generalized mobility pattern is presented in [43]. In more detail, the general
co-movement pattern (GCMP), is proposed, which models various co-movement patterns in a

unified way and is deployed on a modern distributed platform (i.e., Apache Spark) to tackle

40

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

the scalability issue. Even though all of these approaches provide explicit definitions of several
mined patterns, their main limitation is that they search for specific collective behaviors, defined
by respective parameters. Nevertheless, none of the above techniques tackles the subtrajectory
clustering problem.

Trajectory clustering. Most of the aforementioned approaches operate at specific prede-
fined temporal “snapshots” of the dataset, thus ignoring the route of each moving object between
these “snapshots”. Another line of research, tries to discover groups of either entire or portions
of trajectories considering their routes. A typical strategy in dealing with trajectory clustering
is to transform trajectories to a multi-dimensional space and then apply well-known clustering
algorithms such as OPTICS [10] and DBSCAN [40]. Alternatively, another approach is to define
an appropriate similarity function and embed it to an extensible clustering algorithm. In this
direction, there are several approaches whose goal is to group whole trajectories, including T-
OPTICS [123], that incorporates a trajectory similarity function into the OPTICS [10] algorithm.
CenTR-I-FCM [141], a variant of Fuzzy C-means, proposes a specialized similarity function that
aims to tackle the inherent uncertainty of trajectory data. Nevertheless, trajectory clustering is
a computationally intensive operation and centralized solutions cannot scale to massive datasets.
In this context, [34] introduces a scalable GPU-based trajectory clustering approach which is
based on OPTICS [10]. Moreover, [162] attempts to identify frequent movement patterns from
the trajectories of moving objects. More specifically, they propose a MapReduce approach by
employing quadtree-based hierarchical grid in order to discover complex patterns of different
granularity.

Subtrajectory clustering. Nonetheless, discovering clusters of complete trajectories can
overlook significant patterns that might exist only for portions of their lifespan. To deal with this,
another line of research has emerged, that of Subtrajectory Clustering. The predominant approach
here is TraClus [98], a partition-and-group framework for clustering 2D moving objects (i.e. the
time dimension is ignored) that enables the discovery of common subtrajectories. The algorithm
first partitions trajectories to directed segments (i.e., subtrajectories) whenever the shape of a
trajectory changes significantly, by employing the minimum description length (MDL) principle.
Subsequently, the resulting subtrajectories are clustered by employing a modified version of
the DBSCAN algorithm, which is applicable to directed segments. Finally, for each identified
cluster the algorithm calculates a “fictional” representative trajectory that best describes the
corresponding cluster. A more recent approach to the problem of subtrajectory clustering, is
S2T-Clustering [144], where the goal is to partition trajectories into subtrajectories and then form
groups of similar ones, while, at the same time, separate the ones that fit into no group, called
outliers. It consists of two phases: a Neighborhood-aware Trajectory Segmentation (NaTS) phase
and a Sampling, Clustering and Outlier (SaCO) detection phase. In NaTS the trajectories are
split to subtrajectories by applying a voting and segmentation process that detects homogenized
subtrajectories w.r.t. the density of their neighborhood. In SaCO the most representative

subtrajectories are selected to serve as the seeds of the clusters, around which the clusters are

41

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

formed (also, the outliers are isolated). A slightly different approach is presented in QuT-
Clustering [143] and [171], where the goal is, given a temporal period of interest W, to efficiently
retrieve the clusters and outliers at subtrajectory level, that temporally intersect W. In order
to achieve this, a hierarchical structure, called ReTraTree (for Representative Trajectory Tree)
that effectively indexes a dataset for subtrajectory clustering purposes, is built and utilized.
An alternative viewpoint to the problem of subtrajectory clustering is presented in [2], where
the goal is to identify “common” portions between trajectories, w.r.t. some constraints and/or
objectives, cluster these “common” subtrajectories and represent each cluster as a pathlet, which
is a point sequence that is not necessarily a subsequence of an actual trajectory. A pathlet can
be viewed as a portion of a path that is traversed by many trajectories. In order to solve this
problem, the authors in [2] prove that this problem is NP-Hard and propose some approximation
algorithms with theoretical guarantees, concerning the quality of the solution and the running
time. Similarly, in [206] the goal is to identify corridors, which are frequent routes traversed by
a significant number of moving objects. As already mentioned, all of the above subtrajectory

clustering approaches are centralized and cannot scale to the size of today’s trajectory data.

3.3.3 Problem Formulation

Given a set D of moving object trajectories, a trajectory r € D is a sequence of timestamped
locations {r1,...,rn}. Each r; = (loc;,t;) represents the i-th sampled point, i € 1,..., N of
trajectory r, where N denotes the length of r (i.e. the number of points it consists of). Moreover,
loc; denotes the spatial location (2D or 3D) and ¢; the time coordinate of point r;, respectively. A
subtrajectory r; ; is a sub-sequence {r;,...,r;} of r which represents the movement of the object
between ¢; and t; where ¢ < j and 4,5 € 1,...,N. Let ds(r;,s;) denote the spatial distance
between two points r; € 7, s; € s. In our case we adopted the Euclidean distance, however, other
metric distance functions might be applied. Also, let d¢(r;, s;) denote the temporal distance,
defined as |r;.t — s;.t|. Furthermore, let At, symbolize the duration of trajectory r (similarly for

subtrajectories).

3.3.3.1 Similarity between (sub)trajectories Subtrajectory clustering relies on the use
of a similarity function between subtrajectories. Although various similarity measures have been
defined in the literature, our choice of similarity function is motivated by the following (desired)

requirements:

Variable sampling rate and lack of alignment. We make the realistic assumption
that the trajectories do not have a fixed sampling rate and that different trajectories might

not report their position at the same timestamp.

Variable trajectory length. We also assume that different trajectories might have differ-
ent length (i.e. number of samples). This specification excludes euclidean-based similarity

measures which deal with trajectories of equal length.

42

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Temporal displacement. A property that a desired similarity measure for (sub)trajectory
clustering should hold, is to allow trajectories that have some temporal displacement to

participate to the same cluster.

Symmetry. Given a pair of (sub)trajectories r and s, an appropriate similarity measure

between r and s should have the property of symmetry (i.e. Sim(r,s)=Sim(s,r)).

Efficiency. The computation of the similarity should be efficient enough in order to be

able to deal with massive volumes of data, without compromising the quality of the results.

In order to meet with the aforementioned specifications we utilize the Longest Common
Subsequence (LCSS) for trajectories, as defined in [186]. However, other trajectory similarity
functions, which meet with the specifications set, are also applicable. More specifically, the LCSS
utilizes two parameters, the parameter €; indicating the temporal range wherein the method
searches to match a specific point, and the €,, parameter which is a distance threshold to indicate
whether two points match or not. Hence, the similarity between two (sub)trajectories r and s is
defined as:

LCSS, ., (r,5)
man(|r|, [s|)

(1)

Sim(r, s) =

where |r| (]s]) is the length of 7 (s respectively). Moreover, it holds that Sim(r, s) = Sim(s,).

However, LCSS returns the length of the longest common subsequence, which means that
for a given point r; € r that is matched with a specific point s; € s the LCSS will consider the
similarity between r; and s; as 1, regardless of their actual distance d;(7;, s;), which could vary
from 0 to €,p. Put differently, LCSS considers as equally similar all the points that exist within
an €4, range from r, which is a fact that might compromise the quality of the clustering results.
Ideally, given two matching points r; € r and s; € s, s; (r;, respectively) should contribute
to LCSS,, ., (r,s), proportionally to the distance d,(r;,s;). For this reason, we propose a
“weighted” LCSS similarity between trajectories, that incorporates the aforementioned distance
proportionality. In more detail, for each discovered longest common subsequence the similarity
is defined as:

man(|r|,|s|)

(1 B ds(TmSk))

€sp

k=1
min(|r|,|s|)

Sim(r, s) =

where (rg, si) is a pair of matched points.
3.3.3.2 A Closer Look to the Subtrajectory Clustering Problem Our approach to
subtrajectory clustering splits the problem in three steps. The first step is to retrieve for each

trajectory r € D, all the moving objects, with their respective portion of movement, that moved

close enough in space and time with r, for at least some time duration. Actually, this first step

43

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

is a well-defined problem in the literature of mobility data management, known as subtrajectory
join, and more specifically the case of self-join. In detail, the subtrajectory join will return
for each pair of (sub)trajectories, all the common subsequencies that have at least some time

duration, which are actually candidates for the longest common subsequence. Formally:

Problem 1 (Subtrajectory Join) Given a temporal tolerance €;, a spatial threshold €5, and
a time duration 8t, retrieve all pairs of subtrajectories (r';s') € D such that: (a) for each pair
Aty Aty > 60t, (b) ¥r; € 1’ there exists at least one s; € s' so that ds(r;,s;) < €5 and
di(ri, s;5)

< &, and (c) Vs; € s there exist at least one r; € r' so that ds(sj,1m;) < €5 and
di(sj,73) < €.

The second step takes as input the result of the first step, which is actually a trajectory r and
its neighboring trajectories and aims at segmenting each r € D into a set of subtrajectories. The
way that a trajectory is segmented into subtrajectories is neighbourhood-aware, meaning that
a trajectory will be segmented every time its neighbourhood changes significantly. Returning
to Example 1, trajectory A — D should be segmented to A — O and O — D, since at O
the cardinality and the composition of its neighbourhood changes significantly. The problem of

trajectory segmentation can now be formulated as follows.

Problem 2 (Trajectory Segmentation) Given a trajectory r, identify the set of timestamps
CP (cutting points), where the density (or alternatively the composition) of the neighborhood
of r changes significantly. Then according to CP, r is partitioned to a set of subtrajectories
{ri,..., 7}, where M = |CP|+1 is the number of subtrajectories for a given trajectory r, such
that r = in:1 . and k € [1, M].

Given the output of Problem 1, applying a trajectory segmentation algorithm for the tra-
jectories D will result in a new set of subtrajectories D’. The third step takes as input D’ and
the goal is to create clusters (whose cardinality is unknown) of similar subtrajectories and at
the same time identify subtrajectories that are significantly dissimilar from the others (outliers).
More specifically, let C = {C1,...,Ck} denote the clustering, where K is the number of clusters,
and for every pair of clusters C; and C;, with 4,5 € [1, K], it holds that C; N C; = @. Now,
let us assume that each cluster C; € C is represented by one subtrajectory R; € Cj, called
Representative. Furthermore, let R denote the set of all representatives. Actually, the problem
of clustering is to discover clusters of objects such that the intra-cluster similarity is maximized
and the inter-cluster similarity is minimized. Therefore, if we ensure that the similarity between
the representatives is zero, then the problem of subtrajectory clustering can be formulated as an

optimization problem as follows.

Problem 3 (Subtrajectory Clustering and Outlier Detection) Given a set of subtrajec-
tories D', partition D' into a set of clusters C and a set of outliers O, where D' = C U O, in

such a way so that the Sum of Similarity between Cluster members and cluster Representatives

44

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

(SSCR) is maximized:
SSCR= Y Y Sim(Rir}) (3)

VR,ER VT;€C¢

However, trying to solve Problem 3 by maximizing Equation (3) is not trivial, since the
problem to segment trajectories to subtrajectories, select the set of representatives R and its
cardinality |R| that maximizes Equation (3), has combinatorial complexity.

In this Section, we address the challenging problem of subtrajectory clustering in a distributed
setting, where the dataset D is distributed across different nodes, and centralized processing is

prohibitively expensive.

Problem 4 (Distributed Subtrajectory Clustering) Given a distributed set of trajectories,
D = UL | D;, where P is the number of partitions of D, perform the subtrajectory clustering task

in a parallel manner.

Actually, Problem 4 can be broken down to solving Problems 1, 2 and 3 (in that order) in a
parallel/distributed way. In the following, we adopt this approach and outline a solution that is

based on MapReduce.

3.3.4 Problem Solution

3.3.4.1 Overview An overview of our approach is presented in Algorithm 1.

Algorithm 1 DSC(D)

: Input: D

: Output: set C of clusters, set O of outliers

: Preprocessing: Repartition D;

. for each partition D; € UL D; do

perform Point-level Join;

: group by Trajectory;

: for each Trajectory r € D do

perform Subtrajectory Join; — Sect. 3.3.4.2
perform Trajectory Segmentation; — Sect. 3.3.4.8
: group by D;;

: for each subtrajectory ' € D; do

calculate Sim(r’,s") Vs’ € D;; — Sect. 3.3.4.3
: perform Clustering; — Sect. 3.3.4.4

: perform Refine Results;

: return C and O;

© 0 N D U W N e

e e e e
CUs W D= O

Initially, we Repartition the data into P equi-sized, temporally-sorted temporal partitions
(files), which are going to be used as input for the join algorithm in order to perform the
subtrajectory join in a distributed way (line 3). Note that this is actually a preprocessing step
that only needs to take place once for each dataset D. However, it is essential as it enables load

balancing, by addressing the issue of temporal skewness in the input data. Subsequently, for each

45

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

partition D; € U | D; and for each trajectory we discover parts of other trajectories that moved
close enough in space an time (line 5). Successively, we group by trajectory in order to perform
the subtrajectory join (line 8). At this phase, since our data is already grouped by trajectory, we
also perform trajectory segmentation in order to split each trajectory to subtrajectories (line 9).
In turn, we utilize the temporal partitions created during the Repartition phase and re-group
the data by temporal partition. For each D; € UL D; we calculate the similarity between
subtrajectories and perform the clustering procedure (line 12). At this point we should mention
that if a subtrajectory intersects the borders of multiple partitions, then it is replicated in all of
them. This will result in having duplicate and possibly contradicting results. For this reason, as
a final step, we treat this case by utilizing the Refine Results procedure (line 14). Finally, a set

C of clusters and a set O of outliers are produced.

; Job1 \ Job 2 |
Group by
. Group by .
Input .Splt Map Trajectory Reduce Output Map Intersecting or Reduce
Creation to HDFS not & sort by
& SortBy t s
Partition

Trajectory 1 STP

P H 1 0ata 1 " Split 1 N .

H : Split 1 Data : " Refine() Partition 1

] N eind
‘ i Partition 1 /

Split 1
> similarity()
Clustering()

Similarity() Intersecting

RefineResults()

——— . N Trajectory 2 N
T split2 Data i | selit2 Refine() £ 0 Split 2
B i [t-eutsted —> Join(x) Segment() ’. Similarity()
H L Lt-gytate, : .
""" : Similarity() ‘ Clustering()
: ." Not Intersecting
emit Results()
" Trajectory L "
: Split P Data i | selitm Refine() |/ SplitP
B —>| Join(x) Similarity()
L [tp.a-eutete) | ¢ Segment() i
A Clustering()
Similarity() Partition P
qui-dep
Partition 1
t,t
Partition P
tp.y,t;

Figure 18: The DSC algorithm. (Job 1) DTJ and Trajectory Segmentation and (Job 2) Clus-
tering and Refine Results.

3.3.4.2 Distributed Subtrajectory Join As already mentioned, the first step is to perform
the subtrajectory join in a distributed way. For this reason, we exploit the work presented in [170],
called DTJ, which introduces an efficient and highly scalable approach to deal with Problem 1,
by means of MapReduce. More specifically, DTJ is comprised of a Repartitioning phase and a
Query phase. The Repartitioning phase is a preprocessing step that takes place only once and
it is independent of the actual parameters of the problem, namely ey, €, and 6¢. The idea is
to construct an equi-depth histogram based on the temporal dimension, where each of the M
bins contain the same number of points and the borders of each bin correspond to a temporal

interval [t;,¢;). The histogram is constructed by taking a sample of the input data Then, the

46

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

input data is partitioned to processing tasks based on the temporal intervals of the histogram
bins. This guarantees temporal locality in each partition, as well as equi-sized partitions, thus
balancing the load fairly.

In the Query phase, the actual join processing takes place. It consists of two steps, the Join
(line 5) and the Refine (line 8) step, which are implemented as a Map and a Reduce function
respectively. The output of this MapReduce job is for each trajectory » € D all the moving
objects, with their respective portion of movement, that moved close enough in space and time
for at least some time duration. In more detail, the output of DTJ is per trajectory (i.e refer-
ence trajectory) and the tuples are of the form < refTrajPoint;, { MatchingPoints} >, where
refTrajPoint; is the i-th point of the reference trajectory, with ¢ € [1, N] and MatchingPoints
is a list of points of other trajectories that have been identified as join results by the DTJ query.
In Figure 18, the DTJ query corresponds to Job 1 until the Refine() procedure.

The complexity of the Join algorithm is O(|D|log2Q), with @ being the average number of
points per spatial index partition and @ << |D|. The complexity of the Refine algorithm is
O(T - SW - dt - 1), where T is the average number of points per trajectory, SW is the average
number of points contained in a §t + 2¢; window, dt the average number of points contained in a
ot window and [is average the size of the MatchingPoints list. For more technical details about
the algorithms involved in DTJ, their complexity and an extensive experimental study, we refer
to [170].

3.3.4.3 Distributed Trajectory Segmentation The Trajectory Segmentation algorithm
(TSA) takes as input a single trajectory, along with information about its neighborhood, and
partitions it to a set of subtrajectories. Here, we propose two alternative segmentation algorithms.
The first algorithm, coined T'S Ay, identifies the beginning of a new subtrajectory whenever the
density of its neighborhood changes significantly. Such a segmentation algorithm is reminiscent
of the flock definition [95], where the identified groups need to be composed of at least m objects.
For this purpose, we use the concept of voting as a measure of density of the surrounding area

of a trajectory. For a given point r; and any trajectory s, the voting V' (r;) is defined as:

viry = Yo Bl @

VseD sP

where, s is the matching point of s with r;, as emitted by the subtrajectory join procedure. For

a trajectory r that consists of N points {ry,...,ry}, we compute its normalized voting vector
V(r) as follows:
T V(r1) Virn)
\% = yeeny 5
ol {maxf\él Vr;) max}y, V(r;) J)

47

o o2
%}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

B B B

A A A

Figure 19: (a) Five trajectories A - B, A - C, A - D, C — B and D — B, (b) TSA;
segmentation, (c) T'SAs segmentation

Finally, the voting of a trajectory (or subtrajectory) is defined as:

Vi) = 5 Ve (6

The second segmentation algorithm, coined T'S A5, identifies the beginning of a new subtra-
jectory whenever the composition of its neighborhood changes substantially. This segmentation
algorithm is reminiscent of the moving cluster definition [90], where the identified groups need
to share a sufficient number of common objects. Such an algorithm does not take as input the
V(r)[] but instead, for each point 7; € r, it takes as input a list L(r;)[] of the trajectory ids that
have been produced as output by the DTJ procedure.

The following example explains intuitively the difference between the two segmentation algo-

rithms.

Example 2 Consider the example of Figure 19(a) that illustrates five trajectories: A — B,
A—-C,A— D, C — B and D — B. Figures 19(b) and (c) depict the result of TSA;
and TS Ay, respectively. In more detail, we can observe that both TSA1 and T'SAs segmented
trajectory A — D to subtrajectories A — O and O — D, due to the fact that after O, both
the density and the composition of the neighborhood changes. The same holds for trajectories
A—C,C — B and D — B, which are segmented to subtrajectories A — O, O — C, C — O,
O — B, D — O and O — B. However, when it comes to trajectory A — B, we can observe
that while TS As segments it to subtrajectories A — O and O — B, T'SA; does not perform any
segmentation. This is due to the fact that, after O, even though the density of the neighborhood

remains the same (i.e. 3 moving objects), the composition of the neighborhood changes completely.

Both segmentation algorithms share a common methodology, which employs two consecutive
sliding windows W and Ws of size w (i.e. w samples) to estimate the point r; € CP (cutting

point) where the “difference” between the two windows is maximized. This methodology has

48

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

been successfully applied in the past on signal segmentation [135, 133].

Trajectory segmentation. Since the output of the DTJ algorithm is per trajectory, it is
straightforward to give it as input to T'SA which operates at the level of a trajectory. Moreover,
the segmentation is performed in an embarrassingly parallel way, due to the fact that each
trajectory can be processed by a different reduce task independently from others, as depicted in
Figure 18. In more detail, for a given trajectory r € D, T'SA; first calculates the normalized
voting vector V(r)[] and then performs the segmentation by utilizing it. Apart from V(r)[], the
input of the T'SA algorithm is two additional parameters: w and 7. The output is a vector C' P[],

which keeps the starting position of each subtrajectory of r.

Algorithm 2 TSA,(V(r)[],w,T)

1: Input: V(r)[,w,

2: Output: CP]

31— CPH,

4: for n = w+1 ...N-w-1 do
my= &, V()li;

5: w 1=n—w

6 ma = L YT

7. d[n] = |my —mal;

8 dmar = maxﬁ\]:;}i_ll d[i];

9: if d[n] > 7 Ad[n] >= dpqs then
10: n — CP[);

In more detail, as presented in Algorithm 2, two consecutive sliding windows of size w are
created over V(r)[], named W; and Wy (line 4). These sliding windows move forward in time
until V(7)[] is traversed. Here, N is the number of points of trajectory r € D. Then, for each
window, the average normalized voting is computed (lines 5-6) and their absolute difference is
stored in d[], which is an array that stores all the differences between the sliding windows (line 7).
Subsequently, we examine whether the current difference d[n] is larger than the maximum differ-
ence dpq, and we update dyq, accordingly (line 8). Finally, if the difference d[n] is higher than
a threshold 7 and is locally maximized, then, at that point, we segment the trajectory and we
store the starting position of the new subtrajectory to CP[] (lines 9-10).

On the other hand, the input of T'S A, is a list of lists L(r)[] for each r € D. Similarly, two
consecutive sliding windows W7 and W5 of size w are created. Then, for each window, the union
of lists is computed and stored in [y and [lo, respectively. Successively, the Jaccard dissimilarity
between [; and I is computed and is stored to d[], which is an array that stores all the similarities
between the sliding windows. From then on, the algorithm is identical to T'S A;.

The complexity of both TSA; and T'SAs algorithms is O(l - |T'|), where [is average the size
of the “matching” list and |T'| is the average number of points per trajectory.

Similar subtrajectories. The next step is to calculate the similarity between all the pairs
of subtrajectories, using Equation 2. This cannot be done completely after the segmentation at

the Reducer phase of Job 1, illustrated in Figure 18, because at that point each reduce function

49

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

has information only about the segmentation of the reference trajectory to subtrajectories. For
this reason, at this point we cannot calculate the denominator of Equation 2. However, for each
subtrajectory r’ € r, where r is the reference trajectory, we can calculate the similarity between
the matching points (enumerator of Equation 2).

In more detail the output of each reduce function (Job 1 Figure 18) is a relation, called
STP, which holds a set of key-value pairs of the form < (r'.ID,s.ID),{(ss.t,Sim(sys,7")) ...
(s1.t, Sim(s;,r"))} >, where sy, s; are the temporal first and last point, respectively, of trajectory
s that “matches” with subtrajectory /. Moreover, in a separate relation, coined ST, we hold
some extra information for each subtrajectory. More specifically, the tuples of ST are key-
value pairs, where the key is the subtrajectory identifier < ID > and the value is of the form <
ts,te, V,Card >, where t; (t.) is the starting time (ending time, respectively) of the subtrajectory,
V' is the voting and Card is the number of points which constitute the specific subtrajectory.
Due to the fact that these two relations can be pretty large, we need to partition them into
smaller files. In order to achieve this, we broadcast the load balanced temporal partitions that
were created during the Repartitioning phase of DTJ. As illustrated in Figure 18, each reducer
loads these partitions and assigns each subtrajectory (tuple of ST and STP) to all the partitions
with which it temporally intersects. Subsequently, the tuples are grouped by temporal partition
and each group is fed to a Mapper.

At this point, each Mapper has now all the information needed to calculate the similarity
between all the pairs of subtrajectories (Equation 2), for each temporal partition separately.
The similarity between subtrajectories is output in a new relation, called SP. Each tuple of
this relation holds information about a subtrajectory r’ and its similarity with all the other
subtrajectories, whenever this similarity is larger than zero. More specifically, SP contains a set
of key-value pairs where the key is the ID of the subtrajectory (r'.ID) and the value is a list
AdjLst containing elements of the form (s'.1D,Sim), where s’ is a subtrajectory for which it
holds that Sim(r’,s") > 0.

3.3.4.4 Distributed Clustering Clustering. After having calculated the similarity be-
tween all pairs of subtrajectories for each temporal partition, we can proceed to the actual
clustering and outlier detection procedure. The intuition behind the proposed solution to Prob-
lem 3 is to select as cluster representatives, highly voted subtrajectories (Equation 6) that have
zero similarity with the already selected representatives R; € R, thus addressing the inter-cluster
distance minimization. Then, we assign each subtrajectory r} to the R; (and hence C;) with
which it has the maximum similarity Sim(r},, R;).

The input of the clustering algorithm is SP, ST and parameters k and « and the output
is the set of clusters C and the set of outliers O. More specifically, k is a threshold for setting
a lower bound on the voting of a representative. This prevents the algorithm from identifying
clusters with small support. Parameter « is a similarity threshold used to assign subtrajectories

to cluster representatives. It ensures that a subtrajectory assigned to a cluster has sufficient

50

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Algorithm 3 Clustering(SP, ST, k, «)
1: Input: SP, ST, k,«
2: Output: set C of clusters, set O of outliers
3: sort ST by V in descending order;
4: for each element st € ST do

5. if st ¢ R then

6: if st.V > k then

7 st — R;

8: for each element [€ st.AdjLst do
9: if [¢ C then

10: if Sim(l,st) > o then

11: I — C(st);

12: if [€ O then

13: 0=0-1;

14: else

15: O=0Ul

16 else

17 if Sim(l, st) > Sim(l, R(1)) then
18 C(R(1)) =C(R()) -,

19 I — C(st);

20 else

21 O =0 Ust;

222 C=CUR

similarity with the representative of the cluster. This actually poses a lower bound to the average
distance between the representatives and the cluster members and, consequently, guarantees a
minimum quality in the identified clusters (intra-cluster distance).

To begin with, we want to traverse the subtrajectories by their voting, in descending order
(i.e. highly voted subtrajectories first). In order to achieve this, we need to sort ST by V
(line 3). Subsequently, for each subtrajectory st € ST we examine whether it is already assigned
to cluster (line 5). If st is not assigned to any cluster and the voting of st is less than k, then
we add st to the outliers set (line 21). Otherwise, we create a new cluster and consider st as
the representative (lines 6-7). Successively, we consult relation SP and retrieve the adjacency
list of st (line 8). Then, for each element [that belongs to the adjacency list of st, we examine
if it is assigned to any cluster. If not, we investigate whether the similarity between [and st is
greater or equal than the similarity threshold «. If not, we add [to the outlier set O, otherwise
we assign it to the cluster led by st and remove it from the outliers O, in case I € O (lines 9-13).
If I is assigned to a cluster, we examine whether the similarity of [with st is greater than the
similarity with the representative of the cluster that [is currently assigned. If this is the case,
then we remove [from the current cluster and assign it to the cluster led by st (lines 17-19).
Finally, we concatenate C' with R (line 22) so as to return, except from the outlier set O, both
cluster members and representatives.

Refinement of Results. At this point we successfully accomplished to deal with Problem

51

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3 for each temporal partition. However, this might result in having duplicates due to the fact
that each subtrajectory that temporally intersects multiple partitions is replicated to each one
of them. The actual problem that lies here is not the duplicate elimination problem itself but
the fact that the result for such a subtrajectory might be contradicting in different partitions.
In more detail, for each partition, the clustering procedure will decide whether a subtrajectory
is a Representative (R), a Cluster Member (C') or an Outlier (O). Hence, for each intersecting
subtrajectory ¢ and for each pair of consecutive partitions (4,) with which ¢ intersects, ¢ can
have the following pairs of states: (a) O-O, (b) R-R, (¢) C-C, (d) R-C (C-R), (e) R-O (O-R)
and (f) C-O (O-C).

In order to implement the above procedure we need to have all the information concerning the
intersecting subtrajectories (C' and O) for all the Partitions sorted in time. To do this, we group
the trajectories according to whether they are intersecting or not. As illustrated in Figure 18, the
non-intersecting are emitted, since they are not affected, while the intersecting subtrajectories
get sorted by partition. Hence, a Reducer will receive all the required information to make the
appropriate decisions. In more detail, we sweep through the temporal dimension and for each
pair of consecutive partitions we make the appropriate decisions.

More specifically, in case of (a), ¢ is marked as outlier in both partitions, hence, we only
need to eliminate duplicates. In case of (b), the two clusters are “merged”, since all of the
subtrajectories that belong to them are similar “enough” with ¢, which is the representative of
both clusters. In case of (c), let us assume that g belongs to cluster C;(R(q)) in Partition ¢ and
Ci+1(R(q)) in Partition ¢ + 1. Then, ¢ is assigned to the cluster with which it has the largest
similarity with its representative. In case of (d), ¢ remains to be a cluster representative and is
removed from the cluster C' in which it is a member. Finally, in case of (e) and (f), ¢ is removed
from O.

The complexity of the Clustering algorithm is O(|ST| - log|ST|+ |ST| - |L|), with |ST| being
the number of subtrajectories, |L| the average size of the adjacency list AdjLst and |ST|-log|ST)|
is the sorting cost. Here, we should mention that |ST| << |D|. Furthermore, ST and SP are
implemented as HashMaps, hence key search has an O(1) time complexity. The complexity of the
RefineResults algorithm is O(M - |P|-|I|), where M is the number of temporal partitions, |P| is
the average number of intersecting subtrajectories per partition and I is the average size of the
intersection. We should mention, here, that the intersection between two consecutive partitions

is performed in linear time by utilizing HashSets sets.

3.3.5 Experimental Study

In this section, we present the findings of our experimental evaluation. The experiments were
conducted in a 49 node Hadoop 2.7.2 cluster, provided by okeanos®. The master node consists
of 8 CPU cores, 8 GB of RAM and 60 GB of HDD while each slave node is comprised of 4 CPU
cores, 4 GB of RAM and 60 GB of HDD. Our configuration enables us to launch up to 192 tasks

1TAAS for the Greek Academic Community https://okeanos.grnet.gr/home/

52

https://okeanos.grnet.gr/home/

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Table 3: Parameters and default values (in bold)

Parameter Values
@ |G [G) [(v) [
cop (%) 10% | 15% | 20% | 25% | 30%
et (%), ot (%) ||0% |25% |50% | 75% | 100%
w 10 |15 |20 |25 |30
T 02 |04 (0.6 |08 |1
a(ino),k(ino)|[-2 |-1 |O 1 2

simultaneously.

For our experimental study, we employed a real dataset from the urban domain (urban and
the maritime). In more detail, the real dataset, named SIS?, is a 27GB proprietary insurance
dataset of moving objects around Rome and Tuscany area, that contains approximately 2.2 x 107
trajectories that correspond to 7.2 x 10® points.

Our experimental methodology is as follows: Initially, in Section 3.3.5.2 we compare our
solution with two state of the art subtrajectory clustering methods (TraClus [98] and S*T-
Clustering [144]). Subsequently, in Section 3.3.5.3, we study the scalability of our solution by
varying (a) the dataset size, and (b) the number of cluster nodes. Finally, in Section 3.3.5.4,
we perform a sensitivity analysis in order to evaluate the effect of setting different values to the
parameters, in terms of execution time and quality. Table 3 shows the experimental setting,
where we vary the following parameters: e, €, 0t, w, 7, o and k and measure their effect in
the performance and the effectiveness of our algorithms. We should mention that the default

segmentation algorithm in our experimental study is T'SA;.

3.3.5.1 Parameter Setting Setting the different parameters for different datasets can turn
out to be an arbitrary procedure, which, in turn, can jeopardise the quality of the clustering
results. For this reason, we provide some simple rules for setting the parameters relatively to the
dataset being clustered, that do not compromise the quality of the results. In more detail, €, can
be set as a percentage of the dataset diameter. This, however, can be problematic when dealing
with datasets having large spatial variation in their density (e.g. ports in the maritime domain).
For this reason, we utilized the partitioning provided by the spatial index (QuadTree) of DTJ
and calculated €, for each point, as a percentage of the diameter of the cell of the QuadTree to
which it belongs. Moreover, ¢; and 0t are calculated relatively to the average duration between
two consecutive trajectory samples (= 1200 sec for SIS and = 950 sec for AIS Brest).
Concerning parameter w, small values on w can affect the robustness of the estimation, thus
resulting to over-segmentation, while, large values of w can result to overlooking some cutting
points due to the large window size. It has been observed that for w = 20 the robustness of

2This private dataset was kindly provided by Gruppo Sistematica SpA

53

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

the estimation is not affected and the size of the window is small enough so as not to overlook
any cutting points. Concerning parameter 7, our experiments show that the best result in terms
of quality is achieved for 7 =~ 0.4 Finally, the values of o and k can be set “around” the mean
value of the similarity and the voting of the temporal partition, respectively, in terms of standard
deviation. For more details about the effect, in terms of quality, of setting different values to the

parameters of our solution, please refer to Section 3.3.5.4

3.3.5.2 Comparison with related work We compare DSC' with two state of the art sub-
trajectory clustering algorithms, S?T-Clustering and TraClus. The metric that we employ in
order to evaluate the quality of the outcome of the clustering procedure is the well-known RMSE
metric, which is actually a measure of intra-cluster distance between the representatives and
the cluster members. Hence the larger the RMSE, the higher the intra-cluster distance and
consequently the lower the quality of the clustering. In order to perform this experiment, we
utilized the 20% of each dataset which was further partitioned in 4 portions (25%, 50%, 75%,
100%). This choice was necessary because the centralized implementations of S? T-Clustering

and TraClus could not scale with the full size of the datasets.

18 D§C—SI'S _ ' ' '
16 | Faciesgness o 1
14 | .
E 1ol @/@///9\@ |
o
o
— 10 } .
£
L 8 1
()]
= 6 .
o
4 | 1
2t 1
O 1 I

(i) (ii) (iii) (i;/)
Data Percentage

Figure 20: Comparison of the RMSE metric between DSC, S? T-Clustering and TraClus

As illustrated in Figure 20, DSC outperforms, in terms of RMSE, both TraClus and S?T-
Clustering. In more detail, TraClus presents the largest RMSFE which is somehow anticipated,
since the specific algorithm utilizes a density-based approach to cluster subtrajectories, which
in turn, through cluster expansion, can lead to spatially extended clusters. On the other hand,
S T-Clustering presents smaller RMSE than TraClus, due to the fact that it adopts a distance-

54

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

based approach and discovers more compact clusters. However, DSC' results in smaller RMSFE
than $? T-Clustering, mostly due to the fact that in the latter, two trajectories might end-up in
the same cluster even if they have small “matching portions”. However, in DSC' this “matching

portions” should have a minimum (§¢) duration.

SIS SIS

12 —— ‘ ‘ 35 — :
. RefineResults —— RS . RefineResults ——
8 Clustering mmmms i 3 Clustering mmmas |
@ 10} RSE wms] 30 RSE mes
) Join me— | S 25 Join m—
= 8 < —
3 L 3 2 f
£ £ s —]
c c
] 4+] ,
E 510 1
[S] [&]
w i

0 0

20% 40% 60% 80% 100% 24 36 48
Data Percentage # of Nodes

Figure 21: Scalability by varying (a) the size of the dataset and (b) the number of nodes.

3.3.5.3 Performance and Scalability Initially, we vary the size of our datasets and mea-
sure the execution time of our algorithms. We show the impact of the individual steps: Join,
RSE, Clustering and RefineResult using stacked bars. To study the effect of dataset size, we
created 4 portions (20%, 40%, 60%, 80%) of the original datasets. RSE stands for the Refine
and Segmentation procedure (Figure 18, Job 1, Reduce phase). As illustrated in Figures 21(a)
and (b), as the size of the dataset increases, DSC appears to scale linearly. Subsequently, we
keep the size of the datasets fixed (at 100%) and vary the number of nodes. As the number of
nodes increases and the dataset size remains the same, it is expected that the execution time will
decrease. Indeed, as depicted in Figures 21(c) and (d), as the number of nodes increases, DSC
presents linear speedup. This linear behaviour, is somehow anticipated due to the fact that the
DSC approach is dominated by DTJ, in terms of execution time, which presents linear speedup,
as shown in [170].

Investigating further the performance, we can observe that the execution time of the whole
procedure is dominated by the Join step (Figure 18, Job 1, Map phase), followed by RSE. Finally,
the Clustering and the RefineResults step (Figure 18, Job 2) present very good performance, since
the computationally intensive part of the similarity matrix calculation has already been done as

part of the previous steps.

3.3.5.4 Sensitivity Analysis In this section, we vary each parameter presented in Table 3,

while keeping the rest of them in their default value (bold), and we measure their effect in the

55

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

SIS SIS

4 ‘ 4 ‘ ‘ ‘ ‘
— €p —— Wigg! Tsa? — O —
3 85 351 § ¢ T o —e—
NG ot Wisa? —S— kK ——
R 3 € 3 1
=) X
£ 25} > 25¢} \ 1
g 2| s 2| ~
+— L
5 1.5 | (é) 15| 1
’g 17 o 1 1
2
g 05¢ 05 | 1

0 ; - n ‘ 0 : " - ©

0] (i) (i) (iv) (v) 0] (i) (iii) (iv) (v)
Parameter value Parameter value

Figure 22: Sensitivity in terms of (a) execution time (b) in terms of RMSE.

execution time and the quality of the clustering results, in terms of RMSE. Figures 22(a) and
(b) show that the parameters that appear to have a significant impact on execution time are
€; and €,p. This is justified from the fact that these parameters actually affect significantly the
complexity of the Join step (Figure 18, Job 1, Map phase), which is the dominant cost of DSC.
Another parameter that seems to have a perceivable effect on the execution time, is d¢, which in
fact “filters” the results of DTJ, thus fewer data reach the next steps.

Regarding the quality of the clustering results, as illustrated in Figure 22(c) and (d), all
the parameters seem to have an effect over it. In more detail, the larger the values of ¢ and
€sp, the larger the RMSE. This behaviour is expected since we allow objects that are further
away from a representative to participate to the same cluster. In contrast, as dt increases, the
RMSE decreases, which is also anticipated since it sets a lower bound to the longest common
subsequence. Furthermore, all the parameters that control the segmentation have the same effect
on the RMSE, i.e. the smaller (in length) the subtrajectories, the smaller the RMSE. This shows
that breaking trajectories to subtrajectories has a positive effect on the quality of the clustering
and justifies the motivation of our work. Moreover, as « increases the RMSE decreases, since for
small values of «, less similar objects are allowed to participate in a cluster. Finally, the larger

the k the smaller the RMSE, since it disallows the identification of clusters with small support.

56

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.4 Future Location Prediction (FLP) - Trajectory Prediction (TP)

In summary:

e (eneric question addressed: Predicting vehicles’ future positions.

o TrackédKnow specific question: Future Location Prediction (FLP) for online trajectory

analytics.

e Novelty / Advantage over existing methods: The proposed methods provide increased pre-
diction accuracy. Also, FLP NN-based is able to predict future positions of vehicles with
unknown historical trajectories (that may not be included in the training phase), since it
takes into account the patterns made available by the entire population used in the training

phase.

e FExperiments conducted: Experimental evaluation on a Track&Know Pilot dataset with
quantitative and qualitative evaluations and comparison to recent state-of-the-art methods.

Also, experiments for the run-time efficiency were conducted on the Apache Kafka platform.
e Type of analytics: Predictive analytics.

o Automation / TRL: TRL level 3 (integrated on Track&Know platform, tested on real data

for simulation-based applications, so we are between TRL 3 and 4)

e FEaxtension to other domains: Predict the possible evolution of vehicles’ movement in or-
der to improve road safety, improve obstacle avoidance and path planning for intelligent

vehicles, etc.

Predicting vehicles future locations is valuable to construe events and activities taking place in
the urban environment, which is of paramount importance for improving safety. More specifically,
it is of high interest to solve the Future Location Prediction (FLP) problem, which, according to
Georgiou et.al. [53], aims to predict the next instance position of a vehicle based on its present
and previous motion history.

In this work two distinct methods are introduced for solving the FLP problem; the first

employs the power of Neural Networks (NNs), while the second is a route-based algorithm.

3.4.1 Part I: NN-based for short-term

Several methods have been proposed, for forecasting temporal and sequential data, while nu-
merous advances have been achieved by using Neural Networks (NNs) for time series forecasting
[14]. More specifically, in order to deal with sequential data, a Recurrent NN (RNN) [158] ar-

chitecture was proposed. RNNs form a dynamic system, where the current state is determined

57

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

not only by the input messages, but also, from the previous ones. Thus, RNN-based models
keep in memory input information about the delay for an indefinite period of time. On the other
hand, traditional NNs, such as the popular Multi-Layer Perceptrons (MLPs), are based on the
assumption that their input data are independent of each other [122]. Hence, traditional NNs are
not tailored to work with temporal and sequential data [157]. Although, RNNs handle sequential
data inherently, they suffer from the well-known vanishing and the exploding gradient issues [74],
which hinder the processing of long sequences. To remedy this drawback, a lot of research has
been conducted suggesting a number of improvements, with the most successful being the LSTM
[74].

Following this trend and as, a rich set of possible future trajectories arises from vehicles’
current motion paths, we propose a ‘vanilla’ LSTM-based NN for the FLP task trained with
historical GPS road data derived from a variety of vehicles. This results in a technique capable
of forecasting a vehicle’s motion path with unknown historical trajectories in the LSTM training
phase, i.e., not included in the historic data used in training, as long as they manifest more or

less similar movement patterns.

3.4.1.1 Related Work In this paragraph, we review recently introduced vehicle location
prediction methods based on NN-based methods, especially RNN models, while extensive surveys
on vehicle motion prediction models have been presented by Lefévre et. al. [99] and Zhan et.
al.[198].

Percher et.al. [140] employed various methods, including NNs, to predict taxi-drivers’ tra-
jectories, by dividing the road network into a two dimensional grid. Also, in [31] an RNN-based
method for urban vehicle trajectory prediction is proposed, where the urban traffic network is
partitioned into a grid area composed of cells. However, grid-based segmentation does not take
into account the logical cohesion between city areas [122].

Park et.al. [137] provided results for prediction time steps of A = 0.4, 0.8, 1.2, 1.6 and 2.0
sec, while in [111] the prediction time is equal to 3 sec. Also, in [91], [77], [7] and [193], the
employed maximum prediction horizon is 2sec, 5sec 10 sec and 90sec, respectively. Obviously,
these works correspond to short-term prediction.

Wang et.al. [187] proposed an LSTM model for trajectory prediction, which can first make
a single-step prediction after one-hour of observation. Furthermore, in [44], the DLNLP was
proposed, which predicts vehicle’s next location given its trajectories and related contextual
information. These are interesting works, however, both of them cannot predict future positions

of a vehicle when a decent number of its past positions is not recorded.

3.4.1.2 Problem Formulation Given a dataset composed of trajectories derived from vari-
ous vehicles and the features of timestamp #(k), longitude lon} (k) and latitude lat}(k), for each
vehicle s, for each trajectory j, for each record-point k, we seek to learn a model that predicts
the 2D trajectory composed of longitude lon}(k + 1) and latitude lat(k + 1) coordinates at
timestamp ¢3(k + 1), which is equal to ¢3(k) + At.

58

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.4.1.3 Methodology Inhuman mobility, the most straightforward way to predict the future
location is to feed the NN model with massive timestamped locations. Following this trend the
proposed vanilla LSTM is fed with historical GPS road data derived from a variety of vehicles.
More specifically, the proposed methodology follows 3 phases: Data preparation, NN model
application, Data transformation.

In the first phase, the available GPS data are fed to a map-matching procedure, which aligns
trajectories to an underlying road network. More specifically, since vehicles are supposed to
follow roads, map knowledge employed to estimate vehicles’ position by matching vehicles’ loca-
tions with the corresponding road coordinates. For the purposes of this method, a map-matching
technique is applied on the NN input signal in order to decrease GPS positioning error and fluc-
tuations from the actual path [150]. Also, in order to allow Euclidean geometry computations,
for each record-point, the geodetic coordinates longitude and latitude are converted into Carte-
sian coordinates x and y, respectively. Furthermore, to enhance the performance of the LSTM
network, the time information together with the coordinates are incorporated to the network
by employing the first-order differential processing between two consecutive points described in
[112]. To this end, the proposed model, for each vehicle s and each trajectory j, predicts the
intervals of UTM longitude and UTM latitude between k 4+ 1 and k entries, by using an input

vector composed of the following elements in the trajectory j of vehicle s:

e The time difference between k + 1 and k entries, which also indicates the desired time

interval that the prediction must take place
e The time difference between k& and k — 1 entries

e The intervals of UTM longitude and UTM latitude, between k and k — 1 entries

Subsequently, the NN model is employed to predict the coordinates intervals. Finally, the
predicted coordinates intervals are being transformed to the actual predicted locations and then a
map-matching procedure is employed, which aligns the predicted locations to the underlying road
network, due to the fact that the proposed LSTM model assumes nothing about the underlying
road network.

A schematic overview of the proposed LSTM-based network architecture is presented in
Fig.23.

As far as the employed LSTM model is concerned, for the shake of consistency, we briefly
state its update rules below, while for more details, the interested reader is referred to the original
publications [74][55]. In the literature there is a number of variants of LSTM architectures. The
most commonly used LSTM block, namely vanilla LSTM, includes three gates: forget f, input i,
output 0. More specifically, an LSTM cell, for each time-step ¢, is fed with the input vector u(t)

and the updating process can be described by the following equations as also shown in Fig. 24:

59

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Map-
Matching
process

Dense Dense
Lstm |y, Layer Layer Matching

- (rem) (Imear ki

Map-

Timestamped
Positions

Figure 23: Visualization of the proposed FLP approach, composed of 3 phases: Data preparation
(green square), NN model (gray square), Data transformation (red square). The NN is composed
of one LSTM cell and two fully connected layers.

Hidden output @

Cell state Cell state
@ [® S \ c(t)
anh>
&
f(t) i(t) €(t) o(t)
Hidden input Hidden output
@ N4)@

Input

Figure 24: A graphical representation of a vanilla LSTM memory cell

i(t)=c(W;-u(t) +R;-h(t—1)+b;)
f(t) =oc(Wy-u(t)+ Ry -h(t—1) + by)
o(t) =c(W,-u(t) +R,-h(t—1) +b,)
) =tanh(W, -u(t) + Ry -h(t — 1) + by)
c(t)=1£(t)oc(t—1)+i(t) ®€(t)
h(t) = o(t) ® tanh(c(t))

where:

e c is the cell state vector,

60

.
o)
Track & Know

D4.1 Analytics for mobility patterns detection

H2020-ICT-2017-1

e C is the candidate value for the states of the memory cells

W, W;, W,, W, are the input-to-hidden weight matrices,

bs, b;, by, b, are the bias terms,

Ry, R;, R,, Re are the state-to-state recurrent weight matrices,

© is the Hadamard product (element-wise product) of the vectors,

o(), tanh() are the sigmoid and Hyperbolic tangent functions, respectively.

The proposed approach by taking advantage of the Apache Kafka distributed streaming

platform corresponds to an online distributed procedure. More specifically, streaming information

from different vehicles is fed to the network at the same time, which a) makes predictions in

parallel and b) sends the new information in a distributed streaming way to other tools in the

same platform. However, due to invalid points (e.g. GPS noise), the algorithm performs, also,

a "validity check", where non-realistic values are being identified and removed. The overall

online-architecture based on Apache Kafka is can be seen in Fig.25.

B kafka. topic

Config parameters

- Prediction Time interval (At)

Pre-trained NN

“vfi-stream-enriched” |
Trajectory information: - NN Parameters ?
- Timestamp, AANE 8 |- Data vaiidity Parameters »
g o AN TensorFlow
coordinates (lon, lat), fio\ 33
- Speed '&\ ; I
1

v
kafka.

consumer

Check

Validity

Y
Buffer

Prediction

kafka

7|9~ producer

}

katka topic
“vfi-Stream-flptp”

%

Map-Matching
component

katka topic
“vfi_wp4_flpnn_out”

%

Figure 25: Overview of the FLP online procedure with pre-trained model

3.4.1.4 Experiments The proposed methodology was experimentally evaluated over a sam-

ple of the VFI trajectory data. In detail, a total of 977,646 records of location related informa-
tion derived from GPS data of 2,638 distinct vehicles, during one day (2018/11/02) at Athens

61

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Figure 26: Overview of the employed VFI subset.

region (Attica) with spatial bounding box: Lon: [23.559140, 23.912759] E and Lat: [37.885963,
38.105679] N, as illustrated in Fig.26.

We adopted a method evaluation procedure, similar to [5], i.e. the available trajectories were
allocated randomly into three sets: training, validation and testing, employing 50% — 20% — 30%
ratio, respectively. The NN parameters were determined using the training set and then model
selection was performed using the validation set. Finally, the selected NN model’s performance
was tested on the testing set, which is independent of training and model selection and thus can
assess generalization capabilities. Fig.27 depicts the loss function during NNs training in the

training and validation sets.

LSTM GRU Simple RNN

0,028 4

0028 0.030

0.026 0.026 4

0.028

0.024 00244 |
0.026
4

@
@
g 0,022

Los:

w
?

3 o022 4
0.020 o024
0.020 4

ooe 0.022

0,018 4
0.016

0.020

0.016 4

o 5 10 15 20
h
Epoch Epoc

Figure 27: Loss function during training procedure in the training and validation sets for the 3
employed NN models.

The results were evaluated using the Mean Absolute Error (MAE) of the Haversine distance
between the original points and the predicted ones on the testing set. Note that, the first

20 points of each trajectory are employed for initializing the NN states; hence, they are not

62

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

method 1 min 2 min 3 min 4 min 5 min
LSTM 75 232 262 257 251
GRU 87 245 273 276 273
Vanilla RNN 94 253 305 290 282

MLP-+LSTM[190]* | 189 386 550 699 798
* Model performance with span equal to 5sec, on the 12, 24, 36, 48 and 60

points for intervals 1, 2, 3, 4, 5 min., respectively.

Table 4: FLP ERROR (Mean Haversine Distance) in meters - Evaluation on VFI subset for
certain prediction intervals in minutes.

being considered in the evaluation procedure. Also, for comparison purposes we employed two
alternative RNN-based architectures, namely Standard RNN [158] and Gated recurrent units
(GRUs) [29]. The alternative NN architectures are similar to the LSTM model architecture,
i.e. the Standard RNN model is composed of four input neurons, a Vanilla RNN hidden layer
followed by a fully-connected one and two output neurons, while the GRU model comprises the
same layers except that the Vanilla RNN is being replaced by a GRU layer.

Moreover, in order to demonstrate the effectiveness of the proposed LSTM model against
existing recent state-of-the-art methods, we implemented the proposed "MLP+LSTM" model of
[190], while we applied the exact preprocessing procedure proposed in [190]. Particularly, Wang
et.al.[190] proposed an encoder-decoder NN, where a linear interpolation method is employed
in order to create points of a constant sampling rate of 5 sec. Each trajectory is composed of
1000 timestamps, i.e., 5000 sec., which is being splitted into training and testing subsets. For
each interpolated trajectory the initial 800 locations are being used for training purposes and the
remaining 200 locations for testing purposes. Then, given the first 30 historical data points the
NN model predicts locations in the future n time steps. In order to predict for certain intervals:
1, 2, 3, 4, 5 min., we measure the performance of the 12th, 24th, 36th, 48th and 60th point,
respectively.

Fig.28 depicts the results of the LSTM model in the form of boxplots, according to the
Haversine distance MAE for certain prediction intervals in minutes. Also, Table 4 depicts
results for all employed methodologies, for certain prediction intervals in minutes. Obviously,
the LSTM model outperforms the other two NNs, while it predicts satisfactorily the vehicles’
next position. Furthermore, in contrast to the existing most recent state-of-the-art method, i.e.
the "MLP+LSTM" model proposed in [190], our LSTM model performs 60%, 40%, 52%, 63%,
69% better, for the prediction intervals of 1, 2, 3, 4, 5 min., respectively.

As far as the prediction phase of the LSTM network is concerned, experiments were conducted
on a server with 32GB RAM and 8 CPU cores, on the Apache Kafka platform by using 6
consumers, which consume messages from a topic with 6 partitions and the vehicle id as the key.

Results can be seen in the following tables. Particularly, Table 5 depicts statistics (minimum,

63

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

7001 —+ = ledian
600 4 Mean
Error
500
400 1
300
A A A
A
200
N i l l i
oA
T T T T T
1 2 3 4 5

Prediction interval (min)

Figure 28: Boxplots for the Haversine distance MAE for certain prediction intervals in minutes
for the LSTM model.

maximum, median, mean and standard deviation values from 1000 predictions of each consumer)
for the run-time in seconds for one prediction per consumer. Also, Table 6 depicts statistics
(minimum, maximum, median, mean and standard deviation values from 6 consumers) for 100,
1000 and 10000 consumed messages, for time in seconds, number of vehicles and number of
predictions. Finally, Table 7 depicts statistics (minimum, maximum, median, mean and standard
deviation values from 6 consumers) for 1, 10 and 60 seconds, for number of consumed messages,

number of vehicles and number of predictions.

Consumer‘ min ‘ max ‘median‘ mean‘ std ‘

0.0259 {0.1167| 0.0264 [0.0354|0.029
0.0262 {0.1108 | 0.0269 | 0.033 |0.022
0.0261 {0.1063 | 0.0267 |0.0306|0.017
0.0264(0.1144| 0.027 [0.0343|0.023
0.02630.1149| 0.0277 [0.0341|0.023
0.02670.1085| 0.0282 |0.0331| 0.02

S T s W N

Table 5: Statistics for the run-time in seconds for one prediction per consumer.

64

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

‘Consumed messages‘ ‘ min ‘ max ‘median‘ mean‘ std ‘

Time(sec) | 0.2469 | 0.3373 | 0.2859 | 0.2887 [0.0373
100 Vehicles 80 88 85 85 3
Predictions 0 3 1 1 1

Time(sec) | 2.9059 | 3.1403 | 3.1113 | 3.0655 |0.0966
1000 Vehicles 671 736 719 712 25
Predictions 12 17 15 15 2

Time(sec) |28.5146 |30.1490 | 29.4780 |29.4287 | 0.5899
10000 Vehicles 690 756 740 732 25
Predictions 96 152 135 131 21

Table 6: Statistics for 100, 1000 and 10000 consumed messages, for time in seconds, number of
vehicles and number of predictions.

‘Time(sec)‘ ‘ min ‘ max ‘median‘mean‘ std ‘

Consumed messages| 340 | 269 311 351 | 351
1 Vehicles 77 88 83 82 4
Predictions 1 10 4 4 3

Consumed messages | 3121 | 3216 | 3260 3384 | 3215
10 Vehicles 508 | 558 536 534 19
Predictions 37 59 48 48 8

Consumed messages | 2093221349 | 20975 | 21053 | 21105
60 Vehicles 684 | 752 734 727 26
Predictions 146 | 211 195 190 23

Table 7: Statistics for 1, 10 and 60 seconds, for number of consumed messages, number of vehicles
and number of predictions.

3.4.2 Part II: Pattern-based Future Location Prediction

3.4.2.1 Introduction The “explosion” of trajectory data production due to the proliferation
of GPS-enabled devices, poses new challenges in terms of storing, querying, analyzing and ex-
tracting knowledge from big mobility data. One of these challenges is to exploit these data by
means of identifying historical mobility patterns, which, in turn, can gauge the procedure of dis-
covering what the moving entities might do in the future. As a consequence, predictive analytics

over mobility data have become increasingly important and are ubiquitous in many application

65

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

scenarios, such as such as collision detection, traffic estimation and service recommendation, in
different domains, such as maritime, urban and aviation.

Inspired by this, we propose, a system able to predict simultaneously, in real-time, the exact
future location of an extremely large set of moving objects, given a look-ahead time, by employing
historical mobility patterns. To do so, we follow a hybrid approach, where we a predictor is built
for each moving object by considering, when availiable its individual past movement and when
not, collective historical patterns. In this way, we increase the predictive ability of our system,
as compared to only using the individual history of each moving object and the accuracy of our
predictions, as compared to only using collective historical patterns.

Solving this problem is quite challenging, since one has to take into account not only the
inherent complexity of the FLP problem but also the challenges posed by the Big Data era, in
terms of volume and velocity of the incoming data. In more detail, the problem can be divided
in an Offline and an Online part. The Offline part is responsible for identifying patterns of
movement, while the Online part is responsible for predicting the future location of a moving
object, given a look-ahead time and the set of patterns that were identified during the Offline
module.

Towards this direction, [147] utilize the work done by [168] on distributed subtrajectory
clustering in order to be able to extract individual subtrajectory patterns from big mobility data.
These patterns are subsequently utilized in order to predict the future location of the moving
objects in parallel. Despite the fact that this solution takes advantage of subtrajectory patterns
and is Big Data compliant, it suffers from the fact that it takes account only individual patterns,
thus decreasing the system’s predictive ability. Furthermore, due to the fact that subtrajectory
patterns are patterns that are valid for smaller portions of the trajectories lifespan, this might
lead to stumbling into “dead ends” (i.e. reaching the end of a pattern and not having the ability
to predict further ahead in time), which, in turn, would lead to decreased look-ahead prediction
ability. In turn, this might lead to either decreased predictive ability or decreased accuracy,
depending on whether the system provides a prediction ([147] do not provide a prediction if the
look-ahead time exceeds the lifespan of the pattern) or not ([181] return the last point of the
pattern as the predicted point if the look-ahead time exceeds the lifespan of the pattern).

3.4.2.2 Related Work Several efforts try to deal with this problem by applying spatial
discretization and generalization and then try to find frequent locations or sequences of loca-
tions ([117, 100, 57, 81, 197, 108]). However, such approaches provide generalized and thus
inaccurate predictions. Moreover, a large number of approaches do not take into account the
temporal information during the mobility behavior extraction and/or during the prediction!([9,
57, 84, 108, 117, 127, 151]). Another line of research, that takes into account both time and
the exact location of the moving objects, includes efforts that try to deal with this problem by
grouping entire trajectories, identifying patterns of movement and then using them to predict

the future location ([181, 100, 54, 81|). However, identifying patterns that are valid for the entire

66

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

lifespan of the moving objects can overlook significant patterns that might exist only for some
portions of their lifespan. The following motivating example shows the merits of subtrajectory
pattern extraction.

Concerning mobility pattern discovery, the aim is to identify several types of collective be-
havior patterns among moving objects like the so-called flock pattern [95, 185] and the notion
of moving clusters [90]. A number of research efforts that emerged from the above ideas are the
approaches of convoys [83, 130], platoons [103], swarms [104], gathering pattern [201] and trav-
eling companion [173]. Trasarti et al. [180] introduced "individual mobility patterns" in order
to extract the most representative trips of a specific moving object, so that they can predict ob-
ject’s future locations. However, all of the aforementioned approaches are centralized and cannot
scale to massive datasets (e.g., at least 10%). Towards this, the problem of convoy discovery in
a distributed environment by employing the MapReduce programming model was studied both
in [129]. An approach that defines a new generalized mobility pattern which models various
co-movement patterns in a unified way and is deployed on a modern distributed platform (i.e.,
Apache Spark) to tackle the scalability issue is presented in [43].

Another line of research, tries to discover groups of either entire or portions of trajectories
considering their routes. A typical strategy is to transform trajectories to a multi-dimensional
space and then apply well-known clustering algorithms such as OPTICS [10] and DBSCAN [40].
Another approach is to define an appropriate similarity function and embed it to an extensible
clustering algorithm [123]. Nevertheless, trajectory clustering is an “expensive” operation and
centralized solutions cannot scale to massive datasets. Furthermore, [162] proposes a MapReduce
approach that aims to identify frequent movement patterns from the trajectories of moving
objects. In [78] the authors tackle the problem of parallel trajectory clustering by utilizing the
MapReduce programming model and Hadoop. They adopt an iterative approach similar to k-
Means in order to identify a user-defined number of clusters, which leads to a large number of
MapReduce jobs.

However, discovering clusters of complete trajectories can overlook significant patterns that
might exist only for portions of their lifespan. To deal with this, the authors of [98] propose
TraClus, a partition-and-group framework for clustering 2-D moving objects which segments the
trajectories based on their geometric features, and then clusters them by ignoring the temporal
dimension. A more recent approach to the problem of subtrajectory clustering, is S?T-Clustering
[144], where the authors take into account the temporal dimension, and the segmentation of a
trajectory takes place whenever the density of its spatiotemporal ‘neighborhood’ changes signif-
icantly. The segmentation phase is followed by a sampling phase, where the most representative
subtrajectories are selected and finally the clusters are built “around” these representatives. A
similar approach is adopted in [2], where the authors aim at identifying common portions be-
tween trajectories,with respect to some constraints and/or objectives, by taking into account
the “neighborhood” of each trajectory. These common subtrajectories are then clustered and

each cluster is represented by a pathlet, which is a point sequence that is not necessarily a

67

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

subsequence of an actual trajectory. A different approach is presented in QuT-Clustering [143]
and [171], where the goal is, given a a temporal period of interest W, to efficiently retrieve
already clustered subtrajectories, that temporally intersect W. To achieve this, a hierarchical
structure, called ReTraTree (Representative Trajectory Tree) that effectively indexes a dataset

for subtrajectory clustering purposes, is built and utilized.

3.4.2.3 Problem Definition In this section we are going to provide some preliminary def-
initions. In more detail, given a set D of moving object trajectories, a trajectory » € D is a
sequence of timestamped locations {rq,...,rny}. Each r; = (loc;, t;) represents the i-th sampled
point, i € 1,..., N of trajectory r, where N denotes the length of r (i.e. the number of points it
consists of). Moreover, loc; denotes the spatial location (2D or 3D) and ¢; the time coordinate of
point r;, respectively. A subtrajectory r; ; is a sub-sequence {r;,...,r;} of r which represents the
movement of the object between t; and ¢; where ¢ < j and 4,j € 1,...,N. Let ds(r;,s;) denote
the spatial distance between two points 7; € r, s; € s. In our case we adopted the Euclidean
distance, however, other metric distance functions might be applied. Also, let d;(r;, s;) denote
the temporal distance, defined as |r;.t — s;.t|. Furthermore, let At, symbolize the duration of
trajectory r (similarly for subtrajectories).

Our approach to prediction-oriented subtrajectory pattern network extraction can be split
into two sub-problems. The first step is the subtrajectory pattern extraction, where the goal
is to identify popular patterns of movement and the second step is the subtrajectory pattern
network reconstruction problem, where the goal is to construct a spatiotemporal directed graph
G = (V,E), where V is a set of vertices and E is a set of edges, that represents a network
of movement through which a moving object can be routed. For the problem of subtrajectory
pattern extraction we are going to utilize the work done in Section 3.3. More specifically, the
identified cluster representatives are going to play the role of the patterns.

Due to the hybrid nature of out system, there is the possibility that an individual pattern
might be identical with a collective pattern. Furthermore, a pattern might be the continuation
of another pattern, irrespective of whether they are individual or collective. Hence, an algorithm
that takes as input a set of patterns and tries to construct a directed graph, would have to

perform a series of “merge” and “append” operations.

Problem 5 (Pattern Network Reconstruction) Given a set of patterns R, a spatial thresh-
old egp,, a temporal tolerance €; and a similarity threshold o, construct a spatiotemporal directed

graph G = (V, E) after performing all the appropriate “merge” and append operations.

In this report, we address the challenging problem of prediction-oriented subtrajectory pat-
tern network extraction in a distributed setting, where the dataset D is distributed across dif-
ferent nodes, and centralized processing is prohibitively expensive. Finally, the Future Location

Prediction problem can be defined as follows:

68

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Online Component]

FLP
k-recent predict in
positions tpred

Input Stream
---------- > ‘ ° ‘ tpred °

|

Distributed Storage D-SPaNE

1

1

1

1

1

i

Historical i
Data L,—> |
+ . 1
Pattern , K i
Network H
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

1

! Raw Data Join Segmentation
1

1

1

1

1

1

1

:

1

H Network Pattern
H Reconstruction Extractlon
1

1

1

1

1

1

1

1

Offline Component |

Figure 29: The PITHIA Architecture.

Definition 8 (Future Location Prediction) Given a desired look-ahead time tP"*?, a pattern
network G and the recent k positions {ry—_g+1,...,7Nn} of moving object v, where, ry is the

latest reported position, predict the position of v at tP"*?, where tP™% > ry.t.

3.4.2.4 Problem Solution The PITHIA framework consists of an offline and an online
component, as illustrated in Figure 29. The offline component is responsible for extracting
the subtrajectory pattern networks in a distributed manner, given a large set of accumulated
historical data. The online component receives streams of trajectory data and for each moving
object, it retrieves its corresponding hybrid pattern network, “matches” its recent history on the
network and routes through it until it finds the future location of the moving object at the desired
look-ahead time ¢P7¢¢.

Offline Component Concerning the offline component, it consists of a distributed storage
file system, such as HDFS, which contains accumulated historical mobility data and D-SPaNE,
which takes as input a distributed trajectory dataset from the distributed file system and con-
structs a set of hybrid subtrajectory pattern networks SPN = {SPNy,...,SPNy}, where N is
the number of moving objects. As already mentioned, the term hybrid indicates that we build
a predictor for each moving object by taking into account its individual past movement when

available and when not, collective historical patterns. An overview of D-SPaNFE is presented in

69

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Algorithm 4.

Algorithm 4 D — SPaNE(D)

Input: D
Output: set SPN of subtrajectory pattern networks
Preprocessing: Align and Repartition D;
for each partition D; € UL, D; do
perform Point-level Join;
group by Trajectory;
for each Trajectory r € D do
perform Subtrajectory Join;
perform Trajectory Segmentation;
group by D;;
: perform Pattern Extraction ¥ Dy;
: perform Refine Results;
group by Trajectory;
for each Trajectory r € D do
perform Network Reconstruction
return SPN;

e~ B B o S T
A T

Initially, we temporally Align the first points of each trajectory starting at ¢ = 0, in such a
way that the temporal dimension depicts the duration since the start of a trajectory, and then
Repartition the data into P equi-sized, temporally-sorted temporal partitions (files), which are
going to be used as input for the join algorithm in order to perform the subtrajectory join in
a distributed way (line 3). Note that this is actually a preprocessing step that only needs to
take place once for each dataset D. However, it is essential as it enables load balancing, by
addressing the issue of temporal skewness in the input data. Subsequently, for each partition
D; € UF_ D; and for each trajectory we discover parts of other trajectories that moved close
enough in space and time (line 5). Successively, we group by trajectory in order to perform the
subtrajectory join (line 8). At this phase, since our data is already grouped by trajectory, we
also perform trajectory segmentation in order to split each trajectory to subtrajectories (line 9).
In turn, we utilize the temporal partitions created during the Repartition phase and re-group the
data by temporal partition. For each D; € UZ_; D; we perform the pattern extraction procedure
(line 11). At this point we should mention that if a subtrajectory intersects the borders of
multiple partitions, then it is replicated in all of them. This will result in having duplicate and
possibly contradicting results. For this reason, as a final step, we treat this case by utilizing
the Refine Results procedure (line 12). We should also mention that lines 5-12, will be executed
twice, once for identifying collective and once for individual patterns. The actual difference
between the two executions lies at the Point-level Join (line 5), where during the extraction of
collective patterns, we discover for each trajectory parts of other trajectories that moved close
enough in space and time that belong to different moving objects, while during the extraction
of individual patterns, they need to belong to the same moving object. Finally, we perform the

Network Reconstruction (line 15) procedure by grouping the identified individual patterns by

70

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Incoming Group by Distributed Future Emit thure
Stream Moving Object Storage Location Location
920 g Prediction Predictions

Object 1 Consumer 1

Partitioner

Object 2

Consumer 2 Predictions

)

Object N Consumer N

Figure 30: The FLP algorithm

trajectory, hence each processing node receives one such group, while we distribute the global
patterns to all of the processing nodes. Finally, the set SPN is emitted.
Clearly, tackling the above problem is quite challenging in a distributed setting. For this

reason, we outline a solution that follows the popular MapReduce paradigm.

Online Component Regarding the online component, it receives as input streams of mo-
bility data D%!"¢%™ concerning the recent positions of moving objects and the goal is, for each
moving object to retrieve its corresponding subtrajectory pattern network, match its k-most re-
cent positions on the network and predict its future location at the given look-ahead time tP"¢?.
Algorithm 5 describes and Figure 30 illustrates the online distributed future location prediction

procedure.

Algorithm 5 FLP(Dstream GpN, tpred)

. Input: Dstreem GpPN, tpred
: Output: set FLP of future location predictions
: partition D™ by moving object into Dgtream ¢ UN | Dgtream,
: for each partition D™ do

retrieve SPN;;

B; < k-recent positions of D;;

match B; with the most-similar edge e;;

if Sim(B;,e;) > a then

FLP; + predict the future location of Dtreem at tpred;

return FLP;

R e IR U~ i e

—
=

In more detail, the incoming stream of data is partitioned by moving object (line 3). Then, for
each partition (i.e. moving object) Di*¢*™ the corresponding subtrajectory pattern network

SPN; is retrieved. Subsequently, its k-recent positions are accumulated into B;, which is a

71

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

actually a subtrajectory consisting of k timestamped positions, and the most similar edge e; of
SPN; with B; is identified lines 5-7). If their similarity is greater than a similarity threshold «,
then the future location at tP"*? gets identified by navigating through the network (8-9). Finally,
the set F'LP of future location predictions for all the moving objects is returned (line 10).
However, solving the above problem, in a distributed and streaming setting, is not trivial.
For this reason, we utilize Big Data streaming technologies, such as the Apache Kafka Consumer

interface.

3.4.2.5 Experimental Study In this section, we present the findings of our experimental
evaluation. The experiments were conducted in a 49 node Hadoop 2.7.2 cluster. The master node
consists of 8 CPU cores, 8 GB of RAM and 60 GB of HDD while each slave node is comprised of
4 CPU cores, 4 GB of RAM and 60 GB of HDD. Our configuration enables each slave node to
launch 4 containers, thus up to 192 tasks (Map or Reduce) can be launched simultaneously. The
offline component was implemented over Apache Hadoop and the online component by utilizing
Apache Kafka for messaging and Kafka Consumers interface for stream processing.

For our experimental study, we employed a real, 1 week subset of the VFI dataset, consisting
of 25019834 records.Furthermore, we utilized a synthetic dataset in order to verify that our
solution operates as anticipated, given a dataset with a known ground truth. In more detail,
SMOD - Synthetic MOD (SMOD) consists of an object which has performed 400 trips
(trajectories) and is used for the ground truth verification. The scenario of the synthetic dataset
is the following: the object moves upon a simple graph that consists of the following destination
nodes (points) with coordinates: A(0,0), B(1,0), C(4,0) and D(2,1). Half of the times the object
moves with normal speed (2 units per second) and another half moves with high speed (5 units
per second). Figure 31 illustrates the 2D map of the SMOD consisting of three one-directional
(A— B, B— D, D — C) and one bi-directional road (B <> C). All objects move under the

following scenario, for a lifetime of 100 seconds:

e (normal movement — 99% of the trajectories) All objects start from point A towards point
B; the high-speed objects start at t = 0 sec and the normal-speed objects start at t =
20 sec. When an object arrives at B, it ends its trajectory with a probability of 15%;
otherwise, it continues with the same speed to the next point. If there exist more than one

option for the next point, it decides randomly about the next destination.

e (abnormal movement — 1% of the trajectories) A few outlier objects follow a random

movement in space (other than these roads) with a speed that is updated randomly.

Our experimental methodology is as follows: Initially, we verify that our solution operates as
anticipated by applying it to a dataset with a known ground truth. Subsequently, we utilize the
real dataset and report the accuracy of the predictions and the performance, in terms of latency

and throughput.

72

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

15 ¢
D(2,1
| / D
€ os) (N
A(0,0) !B(1,0) s
ol e——e +'® C(4,0)

05 0 05 1 15 2 25 3 35 4 45
X (m)

Figure 31: The 2-D map of SMOD

Figure 32: SMOD in the (a) xy-plane and (b) in 3D (the z dimension is time)

Ground truth verification In order to verify the correctness of our solution we utilized the
aforementioned SMOD dataset. Figure 32(a) illustrates SMOD in the xy-plane and Figure 32(b)
depicts the space-time cube of SMOD.

To begin with, we are going to verify that the pattern extraction component of our solution
operates as anticipated. In more detail, the ground truth of the patterns that are hidden in
SMOD can be inferred by the description of the dataset itself. In particular, eight clusters of
subtrajectories need to be identified. Table 8 lists the eight clusters along with their spatial (2nd
column) and temporal projection (3rd column).

Indeed, the pattern extraction module discovers these eight clusters, as illustrated in Fig-
ure 33,

The next step is the network reconstruction component, where the goal is to construct a di-
rected graph G from the subtrajectory patterns. The challenge here is to restore the connectivity
of movement of the specific objects by applying “stitches” when appropriate. In more detail, Fig-
ure 34 illustrates the edges (each pattern is an edge) of the graph before the graph reconstruction
procedure and Figure 35 depicts the constructed graph, where the applied “stitches” are in black

colour.

73

'@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Figure 33: Discovered patterns in the (a) xy-plane and (b) in 3D (the z dimension is time)

S

Figure 34: Network edges in the (a) xy-plane and (b) in 3D (the z dimension is time)

N

Figure 35: Reconstructed network in the (a) xy-plane and (b) in 3D (the z dimension is time)

74

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Table 8: The ground truth hidden in SMOD

Cluster |Path |Time periods (clusters)
#1,42 A= B0, 0.2], [0.2, 0.7]

#3,#4 |B— C|[0.2,0.8], [0.7, 1.2]

#5,46 | B — D|[0.2,0.52], [0.7, 1.2]

#7 C — B|[0.8, 1]

#8 D — C|[0.52, 1]

Quality of the predictions At this point we have verified that the offline component
functions as expected. Regarding the accuracy of the predictions over the synthetic dataset
we performed a set of experiments where we vary the look-ahead time and measure the Mean
Average Error (MAE) of the predictions. In more detail, Figure 36 shows that the accuracy
achieved is high, considering that the dataset diameter is approximately 500 meters and the look-
ahead time ranges from 5%-30% of the dataset duration (each trajectory ‘lives” for 100 seconds).
Furthermore, as anticipated the larger the look-ahead time, the larger the MAE between the

predictions and the actual positions.

SMOD - Accuracy
200 A —_

MAE (in meters)
=
(=]
o

| |;|;| |:|A:|
A
25 A
=
0
5 10 15 20 25 30

Lookahead Time (in % of the dataset duration)

Figure 36: SMOD - Accuracy of the prediction in MAE
Regarding the VFI dataset, as depicted in Figure 37, the findings regarding the behaviour
of MAE w.r.t. the look-ahead time are equivalent, the larger the MAE between the predictions

and the actual positions.

Performance Finally, we investigate the performance of our solution in terms of latency

(i.e. how much time it takes to make a prediction) and throughput (i.e. how many predictions

(0]

o o2
%}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

VFI - Accuracy

500 A

400 A

300 1 -

AE (in meters)

E

N

8

o
| 4

| 4

100 A

A : l

04 4

0 1 2 3 4 5
Lookahead Time (in minutes)

Figure 37: VFI - Accuracy of the prediction in MAE

per consumer our solution makes within a time unit). Initially, we utilized the SMOD dataset
and measured the latency of our solution. Figure 38 presents our findings, where we can observe
that our system, for the majority of the cases, can make a prediction at about 1 millisecond. In
addition to that, we can see that the look-ahead time does not affect the processing time per

prediction.

SMOD - Latency

o]
o

=
o

Processing Time per Prediction (in ms)
N B
o o

0 1 —h— —h— —h— —h— —h—

0 5 10 15 20 25 30
Lookahead Time (in % of the dataset duration)

Figure 38: SMOD - Latency
Subsequently, we measure the throughput of our solution, in number of predictions per second.
As illustrated in Figure 39, our system can make more than 500 predictions per second on average.

Furthermore, we can also observe that that the throughput is not affected by the look-ahead time.
We run the same set of experiments, but this time for the VFI dataset. As expected, the

76

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Throughput

6000 A

5000 -

4000 4 _

3000 -

2000 A

Number of Predictions per Second

n
o
o
o

A A P 1 A A
== == === — ==]

0 5 10 15 20 25 30
Lookahead Time (in % of the dataset duration)

Figure 39: SMOD - Throughput

findings are again similar, which demonstrates the capability of our solution to handle large
volumes of data in timely fashion. Figure 40 presents our findings, where we can observe that

our system, for the majority of the cases, can make a prediction at about 1 millisecond.

VFI - Latency
—_ 80 1 ——
(%)
€
£
s
2 60
o
K —_
(4 —
I
pu
('U
2 40
()
£
=
o
£
@ 201
()
1%
<
a
0 —h— ——
0 1 2 3 4 5

Lookahead Time (in minutes)

Figure 40: VFI - Latency

Finally, as illustrated in Figure 41, our system can make on average more than 500 predictions

per second.

7

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

VFI - Throughput

5000 -

4000 1

3000 A

2000 A

Number of Predictions per Second

1000 A

. 2 B o=

0 1 2 3 4 5
Lookahead Time (in minutes)

Figure 41: VFI - Throughput

3.5 Driver behavior profiling

In summary:

e (eneric question addressed: Identify driving patterns and categorize driving behaviour

on-the-fly based on tracjectory dynamics.

o TrackédKnow specific question: Driver Behaviour Profiling (DBP) in the short-term for

online / offline trajectory analytics.

e Nowelty / Advantage over existing methods: Completely unsupervised method (no ground
truth required), using sparse GPS location data (no accelerometer) and context-aware
enrichments (local speed limit), scalable complexity for the developed system (cascaded

models)

e FExperiments conducted: Experimental evaluation on a Track&Know Pilot dataset with
quantitative and qualitative evaluations, comparison to current state-of-the-art unsuper-
vised DBP methods.

e Type of analytics: Descriptive analytics.

e Automation / TRL: Currently being integrated for online processing mode for Pilot eval-
uation (TRL: 2 towards 4).

e Extension to other domains: Various types of vehicle mobility data with minimal data

modalities available (sparse GPS, local speed limits), for fleet management, driver perfor-

mance assessment, safety automation, etc.

78

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Driver behaviour profiling, specifically in relation to identifying ‘good’ versus ‘bad’ drivers,
is one of the most challenging problems in mobility data analytics. In this study [52], the
core task of driver behaviour profiling is addressed at the minimum level of pre-requisites, i.e.,
GPS-only trajectory data (no accelerometer or other sensors) of low sampling rate (less than
0.1 Hz). A dynamic temporal resampling algorithm is employed for transforming GPS data
into three distinct location-invariant time series, namely speed, acceleration, and turn rate,
after map-matching and noise elimination pre-processing steps. A wide range of statistical,
time series and spectral methods are implemented as feature functions or ‘encoders’ of various
aspects of short-term mobility tracking. In our experimental study, a large real-world trajectory
datasets are processed and transformed into feature-vector datasets, which are subsequently used
in unsupervised training and adaptive category identification for the various driving behaviour
‘states’. The proposed approach is designed for online/streaming mode and lightweight yet
powerful analytics. The results show that such an approach is feasible, despite its challenging
context of constraints described above, providing a data-driven adaptive way to recognizing

‘normal’ vs. ‘abnormal’ driving patterns on-the-fly.

3.5.1 Trajectory analytics for driver profiling

Trajectory analytics is one of the most commonly addressed tasks in the general context of ge-
olocation data mining, usually involving mobility patterns, mobility graphs, points of interest
(POI), hotspot detection, etc. A special topic that has been advancing steadily over the past few
years is analysing the driving patterns and mobility dynamics as the driver ‘behaviour’, in the
long- as well as in the short-term [115, 105]. In the case of long-term analytics, global trends and
aggregated models can be discovered for regional and large-set statistics regarding driving habits,
location- and route-specific risks of accidents, fuel consumption, delays due to traffic jams, POlIs,
etc. In the case of short-term, which today is the cornerstone in developing fully-autonomous
driving vehicles [128], ‘spot’ analytics of the driving patterns within a limited time frame, usu-
ally no more than few minutes, provide hints about erratic driving, ‘unpredictable’ or risky
movements, instantaneous violations of speed limits, etc. Both cases are very useful and chal-
lenging research problems, but their context, data modalities used and inherent methodological
approaches are distinct and very different.

While the long-term approach in Driving Behaviour Profiling (DBP) has been explored using
location-only data, the short-term approach is inherently more demanding in terms of spatio-
temporal resolution, data quality and additional sensing modalities. In practice, tracking the
movement of a single car or driver for an entire month to extract commonly used routes, visited
POIs or risk of car crash within this context is inherently more straight-forward and well-studied
than having to analyse movement patterns in the context of few minutes or seconds to distinguish
between ‘good’ and ‘bad’ driving. The short-term case, being more challenging, is normally
approached by employing multi-modal, high-resolution sensing, e.g. location tracking together

with accelerometer measurements, while at the same time having pre-determined training routes

79

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

and confirmed driver ‘events’ as ground truth for model training [132, 188].

In general, short-term DBP is based on one or more of the following assumptions about
the problem setup: (a) multi-modal sensing, typically location plus accelerometer, driver- or
environment-sensing apparatus, etc; (b) high-resolution data especially in the temporal dimen-
sion, typically many samples per second; (c) specific annotation of ‘good’ and ‘bad’ driving
patterns, either with some pre-determined set of driving ‘events’ that are introduced during
test runs or by the labelling of training samples by a human expert [188]. In this work, the
most challenging problem setup for the short-term DBP task is treated, i.e., when none of the
previous assumptions is satisfied: neither (a) multi-modal sensing nor (b) high-resolution data
nor (¢) ground truth are available. This essentially translates into designing unsupervised pre-
dictive models for DBP [191, 16] in the short-term context when having location-only, sparse,
variable-rate, unlabelled data. Each of these restrictions is a challenge by itself, given the fact
that short-term DBP focuses on the fine details of movement patterns, which in this case have
to be ‘discovered’ from data of very low quality and characterization for this purpose. However,
these pre-requisites cannot always be satisfied, as multiple sensing and /or ground truth may not
be unavailable, sampling rates may be too low, etc. Additionally, in this work the methodological
approach and the proposed solution is developed in a way that leads to lightweight and on-the-fly
processing, in order to be able to implement it as online/streaming service, which is essentially
the true importance and value of having short-term DBP.

In summary, the novelties of this work in the DBP topic are the following;:
e fully unsupervised, data-driven predictive models for DBP;
e use of sparse, variable-rate, GPS location data as input;

e online map-matching of the raw input to the road network & robust noise filtering;

dynamic temporal resampling method for high-quality fixed-rate upsampling;

treatment of three different data series: speed, acceleration, turn rate;

extensive study on feature functions as ‘encoders’ of DBP patterns.

The rest of the paper is organized as follows: In Section 3.5.2 the short-term DBP, referred to
simply as DBP from here on, is clearly defined in term of the modalities available, the definition
of ‘good’ and ‘bad’ driving and the limitations posed by the current approaches; in Sections
3.5.3 through 3.5.7 the complete methodology of the proposed approach is described in detail,
addressing each one of the individual challenges presented above; in Section 3.5.8 the datasets,
experimental protocol and results are presented; in Section 3.5.9 the methodology is discussed
in view of the presented results; finally, in Section 3.5.10 some conclusions are drawn for the

proposed approach and its applicability to real-world DBP setups.

80

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.5.2 Problem description

Before the DBP problem is explored in detail in various aspects and limitations, a more formal
definition of the context is required in relation to ‘good’ and ‘bad’ driving. Although there is
no universal definition of the DBP problem, the most generic aspect that defines what is the
core value at stake is safety, translated as not being causally involved in car accidents, i.e., not
suffering from or causing them to others [160, 3§].

In general, there are two sets of specifications or constraints that dictate if a driving behaviour
is safe or not: (a) ‘hard’ limits that need to be strictly satisfied and (b) ‘soft’ restrictions that
indicate some strong preference. In practice, (a) are regulations defined by laws and, thus, are
almost always quantifiable and in some way inferred directly from data measurements, as for
example over-speeding is a direct violation of the speed limit on a road. On the other hand, (b)
can be an informal or qualitative description of safe driving for a single car and the others around
it, as for example avoiding cornering (harsh turns or lateral movements), harsh accelerating or
harsh braking, etc. [46]

In view of the relevant literature and the current state-of-the-art, in this work the DBP is

treated in the context of two specific factors for road safety:

1. Speed limits: Driving patterns include checks against over-speeding conditions; these are

hard limits that are available locally for each road, according to official regulations.

2. Path predictability: Driving patterns are associated to road safety at a lower or higher
degree according to how predictable the trajectory of the car is; in other words, the more
predictable a car’s path is, the safer its driving profile is for everyone (anticipate and avoid

the risk of accidents).

It should be noted that other criteria for ‘good’ and ‘bad’ driving may also be applied,
including economic factors, environmental impact, time schedule, etc. However, safety is typically
the single most important factor and the highest priority when viewing the DBP task in the

short-term, e.g. when designing systems for fully autonomous driving [128].

3.5.2.1 Data availability and modalities Regarding data availability, DBP can be cate-

gorized according to the sensing modalities that are available for use:

e single- or multi-vehicle: Sensing data by/for individual cars, e.g. location or acceleration
[167], versus being able to correlate or simultaneously track multiple cars close by, e.g. cars

inside a buffer zone around it [72, 149].

e without or with driver tracking: Vehicle data may be supplemented with sensors that are
tracking actual driver attributes, e.g. attention drift (eyes), sleepiness (steering wheel),
etc. [17]

81

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

e without or with environment tracking: Vehicle data may be supplemented with sensors
that are tracking external factors other than neighbouring cars, e.g. road lines/edges/signs,
obstacles, etc. [189]

In real-world DBP applications, there are several limitations that may arise in relation to
one or more of the aspects described above. The most common one is the lack of additional
modalities other than location tracking and (maybe) accelerometer measurements, as these are
readily available in off-the-shelf portable devices like typical smartphones [39, 26, 61, 75, 132]. In
contrast, the other options usually require special devices installed inside the car (e.g. tracking
cameras), around the car externally (e.g. proximity sensors, LIDAR), in combination with the
other cars in traffic (e.g. inter-vehicle networking) or in combination with environmental guides
(e.g. UV painting on road edges/signs). For obvious reasons, the cheapest and most preferable
DBP solution would require location-only data, perhaps accompanied with acceleration measure-

ments from sensors, if available.

3.5.2.2 Novelties of the proposed approach As previously described, the context of DBP
can be very restrictive in terms of data availability and quality, sensor modalities employed and
the existence of a reliable baseline to be used as ground truth for the models. Moreover, the type
and complexity of the required processing can be prohibitive for on-the-fly DBP models that
need to work with new data as they are generated, instead of processing them offline in batches
with little or no processing time restrictions.

This work presents a new approach to DBP in the short-term context and with on-the-fly
processing in mind. More specifically, the main focus and contributions in this work are the

following:

e data-driven, purely unsupervised model training, without any labelled ground truth avail-
able;

e dynamic temporal resampling method for high-quality fixed-rate upsampling;

e application of high-quality map-matching to the underlying road network and robust noise

filtering (pre-/post-processing);

e use of sparse (< 0.1 Hz), GPS location data of variable sampling rates for the single-vehicle
DBP task;

e generation of high-quality multi-modal time series from the GPS data (speed, acceleration,

turn rate);

e instead of simple thresholds, in-depth analysis of the data series with optimally selected

higher-order (‘texture’), curve and spectral features;

e association with external data enrichments, e.g. weather and road/vehicle types, as addi-
tional DBP features;

82

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

e employment of multi-stage clustering as ‘blind’ DBP state tracking, i.e., driving ‘categories’

that are discovered naturally from the data;

e employment of low-complexity, on-the-fly processing, to enable DBP applications for on-

line/streaming modes.

In order to stay at the minimum level of pre-requisites, in our work we adopt a dynamic temporal
resampling method that is employed for transforming the sparse GPS-only trajectory data into
three distinct, optimally upsampled to a fixed-rate and location-invariant time series, namely
speed, acceleration and turn rate. Additionally, the feature functions are optimally selected for
analysing these reconstructed data series as content-rich ‘encoders’ of DBP patterns but yet
lightweight enough to be applicable to on-the-fly processing architectures.

Given the data restrictions and the challenging setup of the DBP problem here, only few
works from the current best-practices in DBP are comparable with this proposed approach
[160, 105, 115, 110]. The most ‘compatible’ work in terms of unsupervised DBP categorization
via clustering context-sensitive (per road segment) speed and acceleration descriptive statistics is
[191]; this method is also implemented and included in the experimental work here for providing
comparative results in the same dataset, as described in Section 3.5.8.

The results show that our approach is very efficient and computationally feasible even for
on-the-fly processing, thus providing a data-driven adaptive way to recognize various driving
patterns.

The overall ‘pipeline’ view of the proposed approach can be summarized in the following

sequence of phases:
1. map-matching & filtering of the raw GPS data;
2. Dynamic Temporal Resampling Buffer (DTRB);
3. feature extraction via trajectory analytics;
4. feature selection for dimensionality reduction;
5. DBP evaluation via unsupervised models (clustering).

The following sections describe the methods developed and applied in each phase.

3.5.3 Road matching and filtering

As described earlier, instead of using the raw GPS data, the location points are map-matched
against the underlying road network for removing GPS uncertainty and some of the noise. Map-
matching is a well-studied problem in mobility data management and analytics [21, 107] . Never-
theless, in our approach, the distances of each point from the nearest road segments are estimated
geometrically using the Haversine function (spherical approximation) and they are used as input

to an online map-matching module that is based on Hidden Markov Model [58]. This enables

83

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

the correction of GPS errors not just for single points but for entire sequences along the ‘most
probable’ path in the maximum-likelihood sense. Furthermore, in this work the core HMM-based
map-matching process has been augmented with an additional step of localized pre-fetching and
thresholding of the underlying OpenStreetMap (OSM) road network, in order to speed up the
process and avoid singular road matches at excessive distances, i.e., discard the point instead as
GPS noise.

Given the map-matched GPS trajectory, with some outlier points already removed as noise,
the ‘most probable’ path is examined for any ‘spot’ violations against a set of predefined thresh-
olds relevant to the expected values for distance versus time step. Validity checks can be asserted
as additional post-processing for realistic maximum speed, acceleration, braking and turn rates,
hence any location points resulting in such violations are also removed as GPS noise. The
end result from this entire process is the maximum-likelihood ‘corrected’ trajectory of the low-
resolution GPS track, which is subsequently used as input for the next steps of the proposed
method. Figure 42 illustrates a close-view comparison of the raw GPS location data (in red) and

the map-matched & noise-filtered trajectory (in blue), as already discussed above.

3.5.4 Dynamic Temporal Resampling Buffer (DTRB)

The constraint of having sparse GPS location data and no other modality available is one of the
most demanding challenges addressed in this work, since DBP in the short-term context requires
high-resolution movement analytics, i.e., detection of over-speed at one moment not on averaged
values, ‘spikes’ in the acceleration or turn rate, etc.

The core idea of the DTRB is that the map-matched & filtered low-resolution GPS track is
analysed for detecting sequences where the sampling rate is adequately high, even for short peri-
ods of time or data ‘slices’. A much higher and fixed sampling rate is applied to the source data
series for upsampling. This is implemented using high-quality shape-preserving interpolation in
the entire data slice, specifically a spline-like piecewise cubic Hermite interpolating polynomial
(‘pchip’) [49, 89]. For each such slice of sparse GPS location data, the most recent part (tem-
porally) of its upsampled transformation is used as the basis for producing the three main data
series used here for DBP, i.e., speed, acceleration and turn rate. These are used as input to the
feature extractors in the next step, which essentially detect, encode and quantify the properties
that are relevant to the DBP task.

The ‘pipeline’ outline of the DTRB algorithm can be described as follows:

e continuously scan the incoming location data for ‘dense’ slices;

e when a valid slice is detected, upsample to a fixed rate;

from the upsampled location data, generate speed, acceleration, turn rate series;

perform another set of validity checks for the generated data series (filtering);

forward the processed (3x) data series for feature vector generation.

84

'@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

ks S

Figure 42: Example of raw GPS data map-matching & filtering from the dataset used.

85

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Taking all the design constraints into account, as well as the need to continuously process the
input on-the-fly as new GPS location data arrive, the DTRB algorithm satisfies the following

requirements, re-checked upon every new input:
1. Input: Wait for new GPS location points (or read next from offline file).
2. Spatial span (check): Current slice contains at least N™" GPS location points.
3. Temporal span (check): Current slice spans at least L™ sec.
4. Temporal inter-distances (check): Between L™ and L™,

5. Detect gaps: Whenever L7*** is violated, gap is detected and the sequence buffer is flushed,

keeping only the current location point.

6. Short slices: If L™ is satisfied and N, = N > NT™n]ocation points are available,

consider the slice as valid even when its total time span L, < L™,

7. Density criterion: As soon as new input results in Ny > N™" and L; > L%™ and L™",
L7 are satisfied, the slice is marked as valid and is forwarded for further processing;

otherwise return and continue from (1).

8. Upsampling: For every valid slice detected, produce speed Uy, acceleration A; and turn

rate R; data series from the GPS location points, upsampled at fixed rate Tf.

9. Validation: For each of the three new data series, perform a set of additional range checks?;

discard the slice if any check is invalidated and return to (1).

10. Output: If all checks validate ok, use the most recent n - Ty part of the upsampled data

series U;, A¢, Ry for DBP feature vector generation.

The DTRB configuration parameters can be tuned according to the specific dataset at hand.
Figure 43 presents a simplified example of DTRB functionality in various data input conditions,
while Figure 44 illustrates the internal DTRB pipeline for the post-processing validity checks,

i.e., between upsampling and feature vector generation (see steps 8-9-10 above).

3.5.5 Feature extraction via trajectory analytics

According to the definition of the DBP task as described in Section 3.5.2, it is clear that, at least
for the short-term context, using simple thresholding in relation to fixed limits, e.g. checking
for over-speeding or against the mean value of speed when traversing a specific road, is very
inefficient. Instantaneous violations can be missed when the sampling rate of data is too low or
when averaged over a temporal frame that is too large. Most importantly, these threshold-based
methods using simple 1st-order descriptive statistics, e.g. mean value or standard deviation

3Range checks: 0 < U; < 55.50 m/sec (200 km/h); A; < 10.29 m/sec? (0-100 km/h in 2.7 sec); Ry < 90
deg/sec (1.5708 rad/sec).

86

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

SOEONO on

Figure 43: Simplified example of DTRB functionality. Each node represents a data point (input)
and the number inside is the |d¢| from the current time ¢ = 0 sec. DTRB configuration is:
NMin = 4 Nmezr = 5 [min — (5 [lim =3 [m =2 Green (dark) nodes are valid slices for
further processing, while yellow (light) nodes are not.

Enriched on current window:

Stream V(t) = speed

A(t) = acceleration
H(t) = turn rate

Produce -
resampled < || Offline <
(V.AH) DB

BDP pipeline (finalized)

Remove Remove Remove Produce Produce
“excessive || > “excessive |:> “excessive | > restored || > Features Output
speed” acceleration” turns” (VA H) (FVIALTH) (profiles)

Figure 44: DTRB internal pipeline for validity checks.

87

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

of speed, max value of acceleration, etc., are not adequate in capturing the actual fine-scale
properties of the trajectory, as required for truly effective and robust DBP.

In this work, a very large set of candidate feature functions is employed as the initial pool
of DBP trajectory analytics, ranging from 1st- and 2nd-order descriptive statistics to curve,

spectral and synthetic features. In summary, this initial feature set includes:

e Ist-order statistics: min, max, (arithmetic) mean, median, mode, stdev, range, skewness,

kurtosis, entropy, geometric mean.

e Clurve statistics: zero-crossings, roughness index, correlation vs. time, linear regression

coefficients, curve vs. geometric length.
e Synthetic: ratios between selected 1st-order statistics, e.g. range vs. stdev.
e Spectral: auto-regressive AR(2) coefficients, signal ‘energy’.
o 2nd-order statistics: Haralick features [106], run-length features [175].
e Enrichments: vehicle type, road type, road speed limit.

In the current state-of-the-art in DBP, most works exploit features from the 1st-order statistics
category, mostly because they are easy and fast to calculate and straight-forward to interpret
[105, 115, 191]. Some of the curve statistics are also easy to calculate, but usually less effective or
significantly correlated to other 1st-order statistics, e.g. zero-crossings with standard deviation.
To the best of our knowledge, most of these feature functions have not been used in this context
of DBP, i.e., having only sparse, variable-rate, GPS location data as input. The rationale for
the groups of features described above is that they capture an information-rich and ‘compressed’
form of the trajectory properties that are directly or indirectly related to the DBP task at hand.

The entire set of the initial pool of 45 feature functions listed above is applied separately for
each of the three data series, i.e., speed, acceleration and turn rate. In addition, the feature set
is supplemented with several enrichments (e.g. GPS quality), from which three are DBP-related:
vehicle type, road type and road speed limit. As such, the final feature vector, generated for each
valid slice produced by DTRB, contains 45 feature functions for the three data series plus three
more from enrichments, i.e., a total of 45 -3 + 3 = 138 features or ‘encoders’ of potential DBP
mobility patterns in the short-term context. Also, since all the data restrictions of the DBP task
have already been addressed by the DTRB (sparsity, noise, road map-matching, upsampling),
this feature generation stage is independent and it can be applied in principle to any other DBP
setup. Figure 45 illustrates some of the processing implemented for translating a very small set
of GPS reference points into upsampled data series and feature values extracted from it.

Since in this study the DBP task is addressed in its fully unsupervised mode, the goal is to
identify ‘interesting’ features that exhibit explicit statistical characteristics, for example multi-
nomial distributions and/or heavy tails, in order to produce clear data groupings and/or extreme

zones, respectively. In turn, these can produce more evident and distinct clusters or ‘categories’ of

88

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

-4
2.5 10

151

0.5

acceleration (m.‘sec:z)

0 5 10 15 20 25 30 35 40
time (sec)

Figure 45: Example of DTRB processing for transforming a low-resolution variable-rate data
‘slice’ (acceleration) into an upsampled fixed-rate version and modelling for feature extraction;
blue is the resampled curve length, magenta is the linear regression trend, green is the mean
value, yellow is the signal energy.

driving behaviours. In other words, the more explicit these characteristics are, the easier it is for
unsupervised models to be trained for detecting ‘normal’ versus ‘abnormal’ driving, as described
later on in Section 3.5.7. Figure 46 illustrates an example of a feature with low information
content for this task, i.e., very narrow Gaussian distribution with very low skewness (no heavy
left /right tails). On the other hand, Figures 47 and 48are examples of such information-rich
‘encoders’ of clear and distinct groupings of DBP patterns - these are actually the three best-
ranked features selected at the end of the dimensionality reduction process, as described next in
Section 3.5.6.

3.5.6 Feature selection for dimensionality reduction

The initial set of feature functions employed is 45 for each data series, i.e., speed, acceleration
and turn rate, plus three more included from data enrichments (vehicle type, road type, road
speed limit), thus resulting in a total of 138, as described in Section 3.5.5. This collection
of candidate ‘encoders’ of DBP patterns includes essentially various categories of time series
analytics, statistics, signal processing and image analysis algorithms, adapted here for 1-D data
series. Before any model training, the features set has to be refined and significantly reduced in
size, in order to decrease the dimensionality of the DBP feature vectors dataset and, thus, the
complexity of the models.

The feature selection and dimensionality reduction process applied here consists of a multi-

step approach, incorporating statistical ranking, factor analysis, predictive model evaluation, etc.

89

o«}
\}rrack & Know

D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

250,000 L
200,000
150,000
-
€
F]
o
[£]
100.000
50.000
0 T
75 -50 5 0 2

Amean_SNorm

Figure 46: Example of ‘bad’ (information-poor) feature function for DBP (acceleration: A}*¢™).

T it i e

80,000

60,000

Count

40,000

20,000

UHR14_SHorm

Figure 47: Example of ‘good’ (information-rich) feature function for DBP (speed: U/#14).

90

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

00000 - == =5 === === === m o
B 000 e e Y,Y———— e

L T R .

Count

T S

20,000 e e i et

0 1 f 1
-8 B -4
Ugamr_SHorm

Figure 48: Example of ‘good’ (information-rich) feature function for DBP (speed: U7*™").

More specifically, the first stage is comprised of the following:

1.

6.

Single-variate analysis (SVA): Entropy, kurtosis, quartiles, standard deviation.

. Limits-based analysis (LVA): Adaptive labelling & hypothesis testing against outlier /extreme

zones.
Goodness-of-Fit analysis (GoF): Kolmogorov-Smirnov test, Jarque-Bera test, Lilliefors test.
Multi-variate analysis (MVA): Pairwise correlation, mutual information, cross-entropy.

Factor analysis (PCA): Principal Component Analysis for ranking based on eigenvectors.

Fractal dataset analysis (FDA): Intrinsic dataset dimensionality analysis.

Next, feature selection via model testing is employed using the refined subset of 31 features,

a union of the top-10 best-ranked features from each selection method, in order to investigate

and identify even smaller features subsets still capturing most of the DBP information. More

specifically, a Expectation-Maximization (EM) algorithm for fast clustering was employed with

several options for heuristic features subset evaluation, including forward-backward selection,

randomized subsets, particle swarm optimization (PSO), genetic/evolutionary programming, etc.

Clustering quality metrics, more specifically Silhouette and Fisher criterion [178], were employed

as quality metrics for the resulting clusterings and, thus, a ranking method for each setup.

Additionally, due to the significantly reduced size of the features subset, visual analytics were

also employed for identifying ‘interesting’ features w.r.t. their PDFs, i.e., multi-nomial, heavy-

tailed, etc.

91

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Finally, a third stage of feature refinement produces further shrinkage of the dimensionality is
achieved, from 31 down to three main features, plus a supplementary subset of eight top-ranked

features that are combined into PCA components, as described next in Section 3.5.7.

3.5.7 Unsupervised learning - Clustering

Using the refined features subset from the iterative selection process described in Section 3.5.6,
the design of the unsupervised models includes clustering. More specifically, K-Means with
Euclidean distance and speed & acceleration statistics as input was implemented as a reference
baseline of the most comparable state-of-the-art approach in the relevant DBP literature [191].
Additionally, two-step or BIRCH clustering with log-likelihood as distance function is employed
in this study [199] as the base unsupervised model.

There are two main reasons why BIRCH clustering is selected as the main algorithm here
instead of K-Means. First, it incorporates a pre-clustering step that enables the automatic selec-
tion of k for the number of clusters. Second, it incorporates a log-likelihood function as distance
metric instead of the Euclidean distance in standard K-Means, hence it is more distribution-
agnostic. In practice, this means that the underlying probability distribution for each dimension
is not assumed as strictly Gaussian and, hence, the cluster boundaries are more well-fitted to
the actual training data. This is verified in the experimental part of this work, where in very
similar clustering setups with K-Means and BIRCH algorithms, the second one produced cluster
boundaries that are more orthogonal against each axis (input dimension), i.e., a model more eas-
ily implementable via optimal thresholding per-feature instead of minimum-distance calculations
against the centroids in the combined feature space.

Furthermore, a multi-stage approach is employed as a composite clustering model, with each
level incorporating a separate BIRCH clustering model using only specific features from the
input. The optimal selection of features in each case is part of the model design in each clustering
level. Again, Silhouette (mostly) and Fisher criterion are employed as quality metrics for the
resulting clusterings and a quantitative ranking method for each setup, as well as some qualitative
assessment by visual analytics and inspection.

In summary, the following clustering levels are trained in a cascaded form:

e Level-1 (TSL1): BIRCH clustering using U4 and U/*™" as input, resulting in 4 clusters

as output.

e Level-2 (TLS2): BIRCH clustering using TSL1 cluster id and U;”*" as input, resulting in

8 clusters.

e Level-3 (TSL3): BIRCH clustering using TSL2 cluster id and 2 PCA factors as input,

resulting in 5 clusters.

HR14
Ut

In practice, TSL1 uses only two features from the speed data series, namely and

U™ described below, to produce the first level of clustering; as their corresponding PDFs

92

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

illustrate in Figures 47 and 48, these two features effectively produce a very clear four-cluster
setup. Similarly, using the output from TSL1 and UP*" as additional input, another two-category
input effectively produces a very clear eight-cluster output in total, as described in detail later
on in Section 3.5.8. Finally, the additional clustering TSL3 can be incorporated for even finer
and in-depth analysis of the DBP features, if the processing complexity of PCA is acceptable
for the application at hand. In this case, the input space is PCA-transformed and, thus, neither
the input or the output dimensionality is directly comparable to the ones employed in TSL1 and
TSL2 models.

Some of the feature functions used here are based on 2nd-order statistics or ‘texture’ of a data
series, more specifically the well-studied set of 14 features that use the Co-Occurrence Matrix
(COM) [106] and 6 features that use the Run-Length Matrix (RLM) [175]. COM is defined as
a Np-by-Np matrix p(i,j) that counts pairs of subsequent discrete values {i,j} = {1,..., Np},
where Np is the number of bins used to discretize the continuous range of the target variable,
i.e., the same per-series data ranges used for the validity checks in DTRB (see Section 3.5.4).
Similarly, RLM is defined as a Np-by-Nr matrix r(i,j) that counts same subsequent discrete
values ¢ = {1,..., Np} of sequence lengths or ‘runs’ j = {1,..., Nr}, where Np is the number
of bins used to discretize the continuous range of the target variable and Nr is the maximum
expected ‘run’. Whenever the defined Np and Nr discretization lowest or highest limits are
exceeded, the corresponding marginal bins are used for the counter updates, i.e., value inside or
higher/lower than the discretization limits.

The features used in the TSL1 and TSL2 models are the following:

o Mazimum Correlation Coefficient: (speed)

Ut = /% (8)

where \j is the second-largest eigenvalue of:

. i, k)p(4, k
Qi) = ST ¥

k

and: k={1,...,Np} , p;(i) = Zﬁlp(iaj)a
pilj) = X p(is g)-

e Geometric-to-arithmetic means ratio: (speed)

N
gamr VI v
t N (10)
/N3 iy us
e Road speed penalty factor: (speed)
U™ = sign(U;P" —0.98) (11)

93

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

where:
Urlim

vapen _
t max (0, Uy — Uptim) + Uriim

(12)

Note that, since all calculations are applied to discrete- rather than continuous-valued series
for Uy, the term u; in Eq.10 is essentially identical to U; for i = t.

Regarding the penalty factor related to the (local) road speed limit, it is 0 < U;/P“" < 1; in
reality, in most cases 0.7 < U;/P" < 1. When U; < Ui then U/P" = 1, i.e., speed strictly
within the permitted limit, and when U; > Ui, then U;P" < 1, ie., U;P" = U’U% Thus, the
threshold U, 7" < 0.98 is translated to actual speed Uy = Upi, /0.98 ~ 1.02 - Uyj4m or speed at
least 2% over the permitted limit. This is a natural, data-driven definition of ‘safe’ and ‘unsafe’
speed zones, given that in large avenues and highways the average speed of vehicles under normal
traffic conditions is indeed very close to the actual road limit. Here, a hard-thresholded value
U™ at the level 0.98 is used instead of U,P“". This is valid in the sense that, as described in
section 3.5.2, ‘hard’ regulations e.g. for speed limits are one of the factors that define the DBP
problem.

The features used in the T'SL3 model are the first two PCA factors calculated for the subset

of the following eight supplementary features:

o Value non-uniformity: (speed, acceleration, turn rate)

oo _ St (550 7(0:))? 13)

Nz Nr .o
D1 Zj:l 7(i, j)

where:
Xt = {Us, As, R} (14)
e Sum entropy: (speed)
2N
UtHROS = pr+y (i) 10g Paty (7) (15)
i=2
e Mode-to-mean ratio: (speed)
gamr _ mOde(Ut) (16)
N E

where mode(U;) is the value where the peak of the PDF occurs.
e Range-to-stdev ratio: (turn rate)

max R; — min R,

ST __
Rt

- (a7)
VEN (e — p)?/N

where p, = 1/N Zf\il x; is the mean value of R;.

94

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

o AR(2) 1st-order coefficient : (speed, acceleration)
X =y, A(2)X, =¢ (18)

where A(z) =1 — a;27! — azz7? an AR(2) auto-regressive model of order 2 for the best-
approximation (minimum error e;) model identification of series X; via the Yule-Walker
algorithm [148] and X; = {U;, A;}.

Based in this multi-stage clustering approach and the specific TSLx models designed for each
stage, Section 3.5.8 describes the experimental protocol and the results for their assessment,

using a real-world dataset as described next.

3.5.8 Experiments and Results

3.5.8.1 Datasets used In this work, an extensive real-world trajectory dataset of GPS loca-
tion data was used as the basis, consisting of 977,646 records generated by special-purpose devices
installed in 2,638 large vehicles (transport trucks) travelling in the main urban area of the city of
Athens (Attica region, Greece) for a period of 24 hours in a typical weekday. More specifically,
the dataset was defined within the spatial bounding box: Lat = [37.8860, 38.1057] North / Lon
= [23.5591, 23.9128] East and temporal frame: 2-Nov-2018 (00:00:00"-23:597:59"). The data en-
richments included various parameters regarding the local weather (precipitation, temperature,
wind speed & direction from NOAA), the underlying road network (OpenStreetMap — OSM)
and the GPS signal quality (number of satellites tracked, map-matching distance & probability

as described next).

3.5.8.2 Experimental work & results The experimental protocol in this study was based
on the real-world dataset as described above.Most of the experimental work followed the five-
phase sequence summarized at the end of Section 3.5.2, while some parts required iterations
between feature subset refinement and model design for clustering (see Sections 3.5.6 and 3.5.7,
respectively). Various hardware/OS* and software® platforms were used for the experimental
work, some of which is currently ported to R, Java and Python for open cross-platform use.
For DTRB, Figure 49 illustrates the 3-D histogram of the number of extracted valid slices
from the data per data points included and per temporal span used, which was the main guideline
for the optimal configuration of the DTRB parameters for the dataset at hand. More specifically,
considering all these constraints and after extensive experimentation with the DTRB configu-
ration, the nominal process is defined as having a slice of least N™" = 4 location data points
within a span of L™ = 32 sec, being at least L™" = 1 and no more than L™ = 32 sec
apart. If Ny = N = 6 location points and L™" is satisfied, then the slice is considered

4Intel core i7-3537U @2.00GHz & 8GB memory; Intel core i7-8550U @1.80GHz & 32GB memory; Microsoft
Windows 8.1 & 10; Ubuntu Linux 19.04 & 18.4 LTS.

5Mathworks MATLAB v9.4/R2018a (x64); Octave v5.1.0; R v3.6.2; WEKA v3.9.4; IBM SPSS Modeler v14.1
& Statistics v26; custom Java & C/C++ tools for data import/export.

95

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

as valid regardless of L. This means that the total temporal extent of the slice may be from
Nmaz . [min — 6.1 =6 up to N™" . [= 4 .32 = 128 sec. The fixed rate for upsampling
was set to Ty, = 1 sec and the most recent n - Ts = 32 - 1 = 32 sec is the span of the most recent

part of the slice that is produced as output as Figure 49 shows.

1500 -

1000

count

500 -

120

60
55 40

. 20
length (# points) 6 timespan (sec)

Figure 49: DTRB: Histograms of extracted slices versus data points and temporal span used.

For COM and RLM calculation, their optimal sizes were determined experimentally at Np = 5
and Nr = 10 in accordance to the DTRB configuration, i.e., the temporal size of each output
‘slice’. Additionally, the value ranges for Uy, A; and R; were scaled down by a factor of 0.5, in
order to make COM and RLM more compact and decrease the counts of such updates in their
marginal bins.

The results from the reference baseline of the most comparable state-of-the-art DBP approach
[191], using K-Means with Euclidean distance and speed & acceleration statistics as input, is
presented in Figure 50. This is directly comparable to the TSL1 model, proposed in this study,
with its results presented in Figure 51. It is clear that in the second case the clusters are
significantly enhanced in terms of shape and separation, while retaining similar discrimination
ratios in the dataset in terms of cluster sizes.

In the second stage of clustering, results from TSL2 are presented presented in Figure 52.
Again, it is evident that with the addition of one more optimally-selected feature to the TSL1
output, the clusters become even more well-shaped and separated, almost orthogonally with the
centroids essentially at the 8 corners of the 3-D hypercube.

Lastly, in the third stage of clustering, results from TSL3 in Figure 53 illustrate the useful-

96

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

- SKM-K-Means

@ cluster-1
. @cluster-2
Ocluster-3
@cluster5

Count

Qas
[oF:]
O1s
010
o5
a0

e

Ustd_SNorm

Umean_SNorm

Figure 50: K-Means reference model: 4 clusters, smallest 4.2%, silhouette=0.6.

§T-TwoStep

O cluster-1
@clustar-2
@ cluster-3
@ cluster-4

Count

@500
@ 400
® 300
® 200
® 100
]

0o 0z 04 06 08 1.0 1.2

Figure 51: TSL1 model: 4 clusters, smallest 8.1%, silhouette=0.9.

97

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

FT1-TwoStep

O cluster-1
@ cluster-2
@ cluster3
@ cluster-4
O cluster-5
@ cluster-6
@ cluster-7
O cluster-8

Count

@300
@250
@200
® 150
® 100
® 50
L

Ugamr

Figure 52: TSL2 model: 8 clusters, smallest 3.4%, silhouette=1.0.

98

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

ness of adding the PCA-transformed (top 2 factors used) supplementary subset of eight more
optimally-selected features. Although the quality metric (silhouette) seems worse than in TSL2
and TSL1, in fact this clustering space embodies the intrinsic information content of the best
3+8 features, ranging from simple statistics to spectral model coefficients and for all three data
series (speed, acceleration, turn rate), while at the same time producing well-defined clusters in

a low-dimensionality space (3-D).

$T2-TwoStep
O cluster-1
@ cluster-2
@ cluster-3
D cluster-4
O cluster-5

Count
L 2|

$F-Factor-1

Figure 53: TSL3 model: 5 clusters (balanced), silhouette=0.3.

By examining the distribution of these features in the four TSL1 clusters it can be established
that for {UJHE U9 Y. {low,low}=C3’ (8.1%), {low,high}=‘C1’ (36%), {high,low}="C4’
(8.6%), {high,high}=‘C2’ (47.3%). Furthermore, examining the mean speed distribution in the
two smaller clusters which embed U/ =‘low’ reveals that C3 corresponds to speeds between
0-18 km/h and C4 corresponds to speeds between 7-43 km /h. Since UYH14 is based on (second)
eigenvalue Ao, ‘high’ values capture rank > 1 for COM, i.e., non-constant speed patterns. In
addition, the third feature of U;*" introduces another speed-related property of the current

temporal ‘slice’ that is employed in TSL2.

99

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.5.9 Discussion

Based on the experimental results, the proposed five-phase methodology manages to successfully
address all the challenges and data limitations of this DBP problem specification. DTRB together
with efficient map-matching & filtering enables the necessary quality enhancement of the low-
quality raw input, which otherwise would be unusable for developing the subsequent phases.

The extensive initial pool of features that are relevant to DBP patterns is dataset-agnostic and
can be applied to any trajectory/location data of low temporal resolution, in order to reconstruct
high-quality data series for speed, acceleration and turn rate of the vehicle. The feature selection
process is also dataset-agnostic, incorporating a wide range of statistical an heuristic methods
for the initial steps, then more computationally-intensive methods for identifying a subset of
(combined) top-ranked features, finally applied to extensive model design via BIRCH clustering.
The final result is a very small set of 3+8 features, experimentally verified as very efficient and
robust DBP pattern ‘encoders’.

It is important to note that the multi-level clustering approach enables the construction of
models of gradual complexity in terms of computational demands for both the feature extraction
and the clustering itself. Even with the three base feature functions described in Eq.8 through
Eq.12 used by TSL1 and TSL2, i.e., no requirement for PCA as in TSL3, the clustering results
are very clear and robust.

In order to understand what each cluster means in terms of ‘good’ or ‘bad’ driving, the
intrinsic properties of the aforementioned features can be explored. In Eq.8, eigenvalue Ay
captures the second largest ‘variance’ in terms of spectral component magnitude for the COM of
each ‘slice’ of (upsampled) speed data. Strictly constant speed produces a zero-valued COM with
only one non-zero cell, hence the rank of COM is 1 and Ay = 0. Similarly, constant acceleration
produces diagonal patterns in COM with linear length proportional to the time applied, hence
the rank of COM is >1 and Ay > 0. In other words, UfT 14 captures the erxistence of non-constant
speed patterns in each temporal ‘slice’. In Eq.10, it is obvious that near-zero or constant speed
produces U™ =~ 0 or UJ*™ =~ 1, respectively, while non-constant speed patterns produce
values in between.

Although both related to speed change, UV R4 and U/*™" do not capture the same infor-
mation content, as it is evident from TSL1 results in Figure 51. In practice the clusters can be
explained in sequence as: (C1) medium/high ‘stable’ speed, (C2) medium/high ‘volatile’ speed,
(C3) stopped or low speed, (C4) low/medium ‘volatile’ speed. From these, C3 is clearly the ‘most
predictable’ and C2 is the ‘least predictable’, in relation to the criteria defined for the DBP task
in Section 3.5.2. Furthermore, with the addition of U;“" in TSL2, the ‘safety’ aspect is also
addressed by adding another input dimension. If deemed appropriate, some of these clusters can
be merged for a more coarse description, e.g. C3 and C4 (16.7%) in TSL1, thus producing 6
instead of 8 clusters in T'SL2.

100

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.5.10 Enhancements & Future work

In this work, the DBP problem is addressed in the short-term context and with the most data-
restrictive setup, using as input only low-resolution GPS location data of variable sampling
rate, without any other modality available (e.g. accelerometer data). The proposed approach
introduces online HMM-based map-matching to the underlying road network and robust noise
filtering, as well as an algorithm for dynamic temporal resampling, to generate upsampled fixed-
rate data series for speed, acceleration and turn rate.

Starting from an extensive set of feature functions, ranging from simple statistics to spectral
and ‘texture’ analytics, the most content-rich in terms of DBP are selected. For fully unsupervised
predictive modelling, a multi-stage clustering is designed and tested with a real-world dataset.
The results prove the feasibility and effectiveness of the proposed approach.

Further enhancements of the proposed approach are planned in relation to the optional inte-
gration of data modalities, to exploit sensor-based acceleration instead of GPS-induced, improved
clustering models, designed specifically for on-the-fly processing, as well as state-sequencing of

the DBP predictive process, to enable stateful instead of stateless DBP characterization.

3.6 Hot Spot Analysis

In summary:

e Generic question addressed: Discover spatio-temporal cells indicated as hot spots.

o Track&Know specific question: Identify hot spots based on the mobility of vehicles, in

order to be usedul for route optimization.

e Nowelty / Advantage over existing methods: Previous methods mainly focus on spatio-
temporal point data, not trajectories (sequences of points), and also our parallel algorithms

are designed and implemented in Apache Spark so they scale gracefully for Big Data.

e FEzxperiments conducted: Qualitative test on 1GB of Pilot 3 data, and scalability test on a

larger collection of approximately 90GB of mobility data.
o Type of analytics: Descriptive analytics

e Automation / TRL: TRL level 3 (proof-of-concept implemented and tested, so we are
between TRL 3 and 4)

e FExtension to other domains: The method is applicable for other types of mobility data,

e.g., vessels.

101

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Huge amounts of mobility data is being produced at unprecedented rates everyday, due to
the proliferation of GPS technology, the widespread adoption of smartphones, social networking,
as well as the ubiquitous nature of monitoring systems. This data wealth contributes to the ever-
increasing size of what is recently known as big spatial (or spatio-temporal) data [37], a specialized
category of big data focusing on mobile objects, where the spatial and temporal dimensions have
elevated importance. Such data include mobile objects’ trajectories, but also geotagged tweets
by mobile Twitter users, check-ins in Foursquare, etc. Analyzing spatio-temporal data has the
potential to discover hidden patterns or result in non-trivial insights, especially when its immense
volume is considered. To this end, specialized parallel data processing frameworks [3, 4, 69, 174]
and algorithms [36, 192, 194, 45] have been recently developed aiming at spatial and spatio-
temporal data management at scale.

In this context, a useful data analysis task is hot spot analysis, which is the process of
identifying statistically significant clusters (i.e., clusters which have low probability values, based
on a specific trajectory attribute). Motivated by the need for big data analytics over trajectories
of vessels, we focus on discovering hot spots in the maritime domain, as this relates to various
challenging use-case scenarios [32]. More specifically, having a predefined tessellation of a region
into areas of interest for which there is a priori knowledge about occurring activities in them,
it is very useful to be able to analyze — for instance — the intensity of the fishing activity (i.e.,
fishing pressure) of the areas, or to quantify the environmental fingerprint by the passage of a
particular type of vessels from the areas. Similar cases exist in all mobility domains. In the
aviation domain, the predicted presence of a number of aircraft above a certain threshold results
in regulations in air traffic, while in the urban domain such a presence accompanied with low
speed patterns implies traffic congestion. Thus, the effective discovery of such diverse types of
hot spots is of critical importance for our ability to comprehend the various domains of mobility.

Our approach for hot spot discovery and analysis is based on spatio-temporal partitioning of
the 3D data space in cells. Accordingly, we try to identify cells that constitute hot spots, i.e.,
not only do they have high density, but also that the density values are statistically significant.
We employ the Getis-Ord statistic [131], a popular metric for hot spot analysis, which produces
z-scores and p-values by aggregating the density values of neighboring cells. A cell is considered
as a hot spot, if it is associated with high z-score and low p-value.

Unfortunately, the Getis-Ord statistic is typically applicable in the case of 2D spatial data,
and even though it can be extended to the 3D case, it has been designed for point data. In
contrast, our application scenario concerns trajectories of moving objects, temporally sorted
sequences of spatio-temporal positions, and the applicability of hot spot analysis based on a
metric, such as the Getis-Ord statistic (but also any other metric), is far from straightforward.

To this end, we formulate the problem of Trajectory hot spot analysis [126], where our main
intuition is that the contribution of a moving object to a cell’s density is proportional to the time
spent by the moving object in the cell. In particular, we adapt the Getis-Ord statistic in order

to capture this intuition for the case of trajectory data. Then, we propose a parallel and scalable

102

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

processing algorithm for computing hot spots in terms of spatio-temporal cells produced by grid-
based partitioning of the data space under study. Our algorithm achieves scalability by parallel
processing of z-scores for the different cells, and returns the exact result set. Moreover, we couple
our exact algorithm with a simple approximate algorithm that only considers neighboring cells
at distance h (in number of cells), instead of all cells, thus achieving significant performance
improvements. More importantly, we show how to quantify the error in z-score computation,
thereby developing a method that can trade-off accuracy for performance in a controlled manner.

In summary, our work makes the following contributions:

e We formulate the problem of trajectory hot spot analysis, by means of the popular Getis-
Ord statistic, appropriately tailored to become meaningful for sequences of spatio-temporal

positions, rather than plain points.

e We present a parallel algorithm that provides an exact solution to the problem, and returns

spatio-temporal cells with high scores that essentially constitute hot spots.

e To improve the efficiency, we also propose an approximate parallel algorithm and a method
that is able to trade-off result accuracy for computational cost, that bounds the error of

the approximation in a controlled way.

e We developed our algorithms in Apache Spark and we demonstrate their efficiency and
scalability by experimental evaluation on a large data set of trajectories that span three

years in total.

3.6.1 Related Work

Hot spot analysis is the process of identifying statistically significant clusters. This kind of
analysis is often confused with clustering with respect to the density of the identified groups [200].
The computation of density gives us information where clusters in our data exist, but not whether
the clusters are statistically significant; that is the outcome of hot spot analysis. In geospatial
analysis the hot spot discovery is performed with spatial statistics like Moran’s I [118] or Getis-ord
Gi* [131] that measure spatial autocorrelation based on feature locations and attribute values,
while they result in z-scores and p-values for the predetermined points or regions of interest. A
high z-score and small p-value indicates a significant hot spot. A low negative z-score and small
p-value indicates a significant cold spot. The higher (or lower) the z-score, the more intense the
clustering. A z-score near zero means no spatial clustering [131].

Trajectory hot spot analysis is related to the problem of finding interesting places. In [62],
interesting places are defined as either: (a) the areas where a single moving object spends a large
amount of time, or (b) the frequently visited areas from various trajectories, or (c) the areas
where many trajectories alter their state or behavior. In [182] interesting places are identified as
areas where several moving objects spend large amount of time, by moving with low speed. The

minimum amount of moving objects and their minimum duration of stay, should be provided by

103

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

the user at query time. To enable efficient execution for various parameters, an indexing structure
is proposed which enables fast retrieval of trajectory segments based on their speeds. Notice
that these variations aim to discover spatial regions of interest, while our approach identifies
interesting spatial regions for various temporal segments.

Hot spot analysis is a special case of spatio-temporal data analysis, mobility data mining and
more specifically trajectory data mining, since we are interested in trajectory-based hot spot
analysis. These domains have been the subject of many research efforts lately. Recent works
on hot spot analysis for spatio-temporal data include [76, 109]. The study in [109] proposes a
different way to visualize and analyze spatio-temporal data. The aim is to identify areas of high
event density, by using multivariate kernel density estimation. Different kernels in spatial and
temporal domains can be used. After such hot spots have been identified, a spatio-temporal
graph can be formed to represent topological relations between hot spots. In [76], a spatio-
temporal graph is analyzed in order to find anomalies on people’s regular travel patterns. These
interesting phenomena are called black holes and volcanos, represented as subgraphs with overall
inflow traffic greater than the overall outflow by a threshold and vice-versa. The detection of
frequent patterns and relations between black holes and volcanos lead to the discovery of human
mobility patterns. In [92], hot spot analysis is used for studying mobile traffic. The aim is to
identify locations where the density of data volumes transmitted is high, based on specific values
of thresholds. The results of the analysis are then used to detect the distribution of mobile data
traffic hot spots and to propose a meaningful cell deployment strategy.

In the domain of trajectory data mining [202] there are several clustering approaches that
are relevant to this work. The typical approach is to either transform trajectories to vector
data, in order for well-known clustering algorithms to be applicable, or to define appropriate
trajectory similarity functions, which is the basic building block of every clustering approach.
For instance, CenTR-I-FCM [141] builds upon a Fuzzy C-Means variant to perform a kind of
time-focused local clustering using a region growing technique under similarity and density con-
straints. For each time period, the algorithm determines an initial seed region (that corresponds
to the sub-trajectory restricted inside the period) and searches for the maximum region that
is composed of all sub-trajectories that are similar with respect to a distance threshold d and
dense with respect to a density threshold §. Subsequently, the growing process begins and the
algorithm tries to find the next region to extend among the most similar sub-trajectories. The
algorithm continues until no more growing can be applied, appending in each repetition the tem-
porally local centroid. In the same line of research, having defined an effective similarity metric,
TOPTICS [123] adapts OPTICS [10] to enable whole-trajectory clustering (i.e., clustering the en-
tire trajectories), TRACLUS [98] exploits on DBSCAN [40] to support sub-trajectory clustering,
while T-Sampling [142, 134], introduces trajectory segmentation (aiming at temporal-constrained
sub-trajectory clustering [143]), by taking into account the neighborhood of a trajectory in the
rest of the data set, yielding a segmentation that is related only on the number of neighboring

segments that vote for the line segments of a trajectory as the most representatives. All the

104

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

above trajectory clustering approaches they are capable of identifying trajectory clusters and
their densities but do not tackle the issue of statistical significance in the space-time they take
place.

There are several other methods that try to identify frequent (thus dense) trajectory pat-
terns. In case where moving objects move under the restrictions of a transportation network,
[159] proposed an online approach to discover and maintain hot motions paths while [28] tackled
the problem of discovering the most popular route between two locations based on the historical
behavior of travelers. In case where objects move without constraints, [25] proposed a method
to discover collocation patterns, while in [56] where the goal is to discover sequential trajectory
patterns (T-patterns), the popular regions that participate in T-patterns can be computed au-
tomatically following a clustering approach that utilizes the density of the trajectories in the
space. The algorithm starts by tessellating the space into small rectangular cells, for each of
which the density (i.e., the number of trajectories that either cross it or found inside the cell)
is computed. Then, by following a region-growing technique the dense areas are enlarged by
including nearby cells as long as the density criterion is fulfilled. The problem of identifying hot
spots from trajectory data in indoor spaces has been studied in [85]. It introduces a formula
for computing scores for indoor locations based on users’ interests rather than measuring the
amount of time a user spends in a specific area. This formula is used for calculating a score
for each indoor area, based on the mutual reinforcement relationship between users and indoor
locations. These methods have a different focus from our proposal sharing similar objectives and
shortcomings as the aforementioned techniques.

The problem of finding hot spots for spatio-temporal point data has been studied in SigSpa-
tial Cup at 2016 (http://sigspatial2016.sigspatial.org/giscup2016/home) where several
interesting methods where proposed. Among others, [113, 125] proposed algorithms to identify
hot spots based on spatial density of point data (in particular drop-off locations of taxis). In-
stead, this work, we study the problem of hot spot analysis for trajectory data, which is different
because the effect of a data point to a cell depends on the trajectory in which it belongs to
(i.e., on other points). To the best of our knowledge, there is a lack of parallel processing so-
lutions that operate on distributed trajectory data in an efficient and scalable way to discover

trajectory-based hot spots.

3.6.2 Problem Formulation

Consider a moving object database D that consists of trajectories 7 € D of moving objects. A
trajectory, denoted by an identifier 7, is a sequence of data points p described by 2D spatial
coordinates (p.z and p.y), a timestamp (p.t), as well as any other information related to the
spatio-temporal position of p. For example, attributes referring to weather information. We also
use p.7 to refer to the trajectory that p belongs to. Furthermore, consider a spatio-temporal
partitioning P which partitions the 3D spatio-temporal domain into n 3D cells {c1,...,¢c,} € P.

Each data point p is mapped to one cell ¢;, which is determined based on p being enclosed in c;.

105

http://sigspatial2016.sigspatial.org/giscup2016/home

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

’ Symbol ‘ Description

D Spatio-temporal data set

peD Spatio-temporal data point (p.z, p.y, p.t)

T A trajectory (as a sequence) of points p1,p2,...
P 3D space partitioning P = {c1,...,¢n}

¢ The i-th cell of partitioning P, (1 <14 < n)

T Attribute value of cell ¢; € P

W;, j A weight indicating the influence of cell ¢; to ¢;
« Parameter used to define the weights w; ;

n The number of cells in P

G7 The Getis-Ord statistic for cell ¢;

Gr An approximate value of G

Hij Distance between cells ¢; and ¢; (in number of cells)
top-k Requested number of most significant cells

Table 9: Overview of symbols.

Also, we use ¢; to refer to temporal start and end of a cell ¢;.

start? Clend

We also define the attribute value x; of the cell ¢; as: x; = Zreci %, thus each
trajectory 7 that exists in a spatio-temporal cell ¢; contributes to the cell’s attribute value by
its temporal duration te,q — tstere in ¢; normalized by dividing with the cell’s temporal lifespan
Civng — Cigsars- Lhis definition implies that the longer a moving object’s trajectory stays in a
spatio-temporal cell, the higher its contribution to the cell’s hot spot value.

The problem of hot spot analysis addressed in this work is to identify statistically significant
spatio-temporal areas (i.e., cells of P), where the significance of a cell ¢; is a function of the
cell’s attribute value z;, but also of other neighboring cells’ attribute values. A commonly used

function (statistic) is the Getis-Ord statistic G, defined as [131]:

- Z;l 1 Wi i — XZ] 1 Wi,j
S\/[HZ? v wi = (0 wig)?)

n—1

(19)

where z; is the attribute value for cell j, w; ; is the spatial weight between cell ¢ and j, n is equal
to the total number of cells, and:

Z;‘Lﬂ Ty

X-= (20)

\/ Lt gy (21)

To model the intuition that the influence of a neighboring cell ¢; to a given cell ¢; should be

decreasing with increased distance, we employ a weight function that decreases with increasing

distance. Namely, we define: w;; = a' =, where a > 1 is an application-dependent parameter,

106

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

and p represents the distance between cell i and cell j measured in number of cells®. For
immediate neighboring cells, where p = 1, we have w;; = 1, while for the next neighbors we
have respectively: 1/a, 1/a?, ...,. This definition captures an “exponential decay” with distance
in the contribution of neighboring cells to a given cell.

Based on this, the problem of trajectory hot spot analysis is to identify the k most statistically

significant cells according to the Getis-Ord statistic, and can be formally stated as follows.

Problem 6 (Trajectory hot spot analysis) Given a trajectory data set D and a space partitioning
P, find the top-k cells TOPK = {c1,...,c,} € P based on the Getis-Ord statistic G, such that:
G; >G5, Ve e TOPK, ¢;j € P—TOPK.

In this work, we study an instance of Problem 6, where the aim is to perform hot spot
analysis for trajectories over massive spatio-temporal data by proposing a parallel and scalable
solution. Thus, we turn our attention to large-scale trajectory data sets that exceed the storage
and processing capabilities of a single centralized node. We assume that the data set D is
stored distributed in multiple nodes, without any more specific assumptions about the exact
partitioning mechanism. Put differently, a node stores a subset D; of the records of D, and
it holds that D;(D; = 0 (for ¢ # j), and |JD; = D. Hence, our work studies a distributed
version of Problem 6. Table 9 provides an overview of the notation used for the work on hot

spot analysis.

3.6.3 An Exact Algorithm: THS

In this section, we present the THS (Trajectory Hot Spot) algorithm for distributed hot spot
analysis over big trajectory data. The proposed algorithm is designed to be efficiently executed
over a set of nodes in parallel and is implemented in Apache Spark. The input data set D is

assumed to be stored in a distributed file system, in particular HDF'S.

3.6.3.1 Overview Intuitively, our solution consists of three main steps, which are depicted in
Figure 54. In the first step, the goal is to compute all the cells’ attribute values of a user defined
spatio-temporal equi-width grid. To this end, the individual attribute values of trajectory data
points are aggregated into cell attribute values, using the formula introduced in the previous
subsection. Then, during the second step, we calculate the cells’ attribute mean value and
standard deviation which will be provided to the Getis-Ord formula later. Furthermore, we
compute the weighted sum of the values for each cell ¢;: 2?21 w; jxj, by exchanging the cells’
attribute values between themselves. Upon successful completion of the second step, we have
calculated all the individual variables included in the Getis-Ord formula, and we are now ready
to commence the final step. The goal of the third step is to calculate the z-scores of the spatio-
temporal grid cells, by applying the Getis-Ord formula. The trajectory hot spots can then

6Notice that this distance applies to the 3D grid, i.e., cells with the same spatial extent that belong to different
temporal intervals have non-zero distance.

107

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Trajectory
Data

Build Attribute Grid

Exchange Cell
Information

I

Calculate Getis-Ord

Trajectory
Hot-spots

Figure 54: Overview of THS algorithm.

be trivially calculated, by either selecting the top-k cells with the higher z-score values, or by
selecting the cells having a p-value below a specified threshold.

The above description explains the rationale of our approach. In the following, we describe
the implementation of our solution using Apache Spark Core API, along with the necessary

technical details.

Algorithm 6 THS Step 1: Build Attribute Grid

Input: D, P
Output: gridRDD: RDDJ[i, ;]
function:
gridRDD = D.mapToPair(p =>

emit new pair(getCellld(p) ® p.7, p.v)
).reduceByKey(t1, to =>

emit new pair(MIN(t1, t2), MAX(t1, t2))
).mapToPair(cell _trajectory id, (tstart 5 tend) =>

end —tstart

emit new pair(cell_id, -

end ~ Cistart

).reduceByKey(v1, v => emit vy + v9)
: end function

=
= O

3.6.3.2 Building the Attribute Grid The first step of THS, depicted in Algorithm 6,
takes as input a data set D of trajectories stored in HDFS and a spatio-temporal partitioning
P, which defines the size of all cells ¢; regarding their spatial and temporal dimensions. We
use a function getCellld(p) to get the identifier i of cell ¢; enclosing data point p. Initially,
the trajectory data points are mapped to key value pairs (line 5), where the key is composed
by a string concatenation (denoted with @ in the algorithm) of the data point’s cell id and
its trajectory id (p.7), while the value is the timestamp of p. This assignment of composite
keys, enables us to group data points by cell id and trajectory id; we calculate the minimum

and maximum attribute values (tsiart, tena respectively) for each such group (line 7). Then, we

108

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

compute the fraction w, individually for each group defined by the composite keys, and

tend istart
keep only the cell id part of the key (line 9). We perform a regrouping based on the new keys, to
calculate the sum of the fractions for each cell (line 10). Hence, we have now successfully built

the attribute grid (gridRDD), by computing each cell’s attribute value z; =, . tend—tstare

Cignd ~Cistart

Algorithm 7 THS Step 2: Exchange Cell Information

Input: gridRDD: RDDJi, z;], P
Output: X, S, wSumRDD: RDDJs, D Wi 4]
function:
gridRDD.forEach(z; => update accumulators)
calculate X and S from accumulators
wSumRDD = gridRDD.flatMapToPair(i, x; =>

w; = getWeightList (7)

for each j in w; do

emit new pair(j, x; * w; ;)

end for
.).reduceByKey(wzy, wry => emit wxy + ws)
: end function

=

3.6.3.3 Exchanging Cell Information In its second step, as presented in Algorithm 7, THS
takes as input the attribute grid produced by the first step and the spatio-temporal partitioning
P. In line 4, we distributively calculate the sum and squared sum of the cells’ attribute values.
Having computed these sums, we can trivially calculate the mean value X and standard deviation
S, in a centralized fashion (line 5).

Then, our goal is to broadcast each cell’s weighted attribute value to all the other cells of the
grid. To this end, in lines 7-10, we first get the list of weights between current cell ¢; and all the
cells ¢; of the grid (line 7). For each cell ¢; we emit a new key value pair consisting of the j value
as the key and the weighted attribute as its value (line 9). Then, we perform a grouping of these
key value pairs, based on their keys (i.e., cell ids), while calculating the sum of their weighted
attribute values (line 11). The result of this operation is the weighted sum grid (wSumRDD),

which will be used for computing the Getis-Ord formula.

Algorithm 8 THS Step 3: Calculate Getis-Ord

Input: X, S, wSumRDD: RDD[i, 327, w; jz;], P
Output: G;RDD: RDD[i, G7]
function:
G;RDD = wSumRDD.mapToPair(i, wz; =>
sum; = getWeightSum/(7)
squaredSum,; = getWeightSquaredSum()

wr; —X-sum;
[n-squaredSum; —(sumy)?]
e

emit new pair(s,
s

8:)

9: end function

109

&
;}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

|_ Cells at 2 hops
from ¢,

~ Cells at 1 hop
from ¢,

Figure 55: Example of cells at distance from a reference cell ¢; (the dark color indicates the
weight of their contribution to ¢;’s value z;).

3.6.3.4 Calculating z-scores with Getis-Ord statistic The third step of THS is depicted
in Algorithm 8. It takes as input the X and S values computed in the previous part, along with
the weighted sum grid and the spatio-temporal partitioning P. We map each cell’s weighted
sum attribute value to a z-score by applying the Getis-Ord formula. The sum and squared sum
of weights are initially computed (lines 5,6) in order to be provided to the calculation of the
Getis-Ord formula right after (line 7). Finally, the result of this operation, results to a data set
(G;RDD) consisting of cell ids and their Getis-Ord z-scores.

3.6.4 An Approximate Algorithm: aTHS

The afore-described algorithm (THS) is exact and computes the correct hot spots over widely
distributed data. However, its computational cost is relatively high and can be intolerable when
the number of cells n in P is large. This is because every cell’s value must be sent to all other
cells of the grid, thus leading to data exchange through the network of O(n?) as well as analogous
computational cost, which is prohibitive for large values of n.

Instead, in this section, we propose an approximate algorithm, denoted aTHS, for solving the
problem. The rationale behind aTHS algorithm is to compute an approximation (j;“ of the value
G7 of a cell ¢;, by taking into account only those cells at maximum distance h from c¢;. The
distance is measured in number of cells. Intuitively, cells that are located far away from c¢; will

only have a small effect on the value G, and should not affect its accuracy significantly when

i
neglected.

More interestingly, we show how to quantify the error AG} = G} — éf of the computed hot
spot z-score of any cell ¢;, when taking into account only neighboring cells at distance h. In
turn, this yields an analytical method that can be used to trade-off accuracy with computational

efficiency, having bounding error values.

110

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.6.4.1 The aTHS Algorithm Based on the problem definition, cells located far away
from a reference cell ¢;, only have a limited contribution to the Getis-Ord value G} of ¢;. Our
approximate algorithm (aTHS) exploits this concept, and can be parameterized with a value h,
which defines the subset of neighboring cells that contribute to the value of ¢;. We express h in
terms of cells, for instance setting h=2 corresponds to the case depicted in Figure 55, where only
the colored cells will be taken into account by aTHS for the computation of Cf;‘ (an approximation
of the value of G7). In practice, the relationship between cell ¢; and white cells can be expressed

by setting their weight factor equal to zero.

Algorithm 9 aTHS Part 2: Exchange Cell Information

1: Input: gridRDD: RDDJi, 2], P, h

2: Output: X, S, wSumRDD: RDDJ3, Z?Zl w; ;%]
3: function:

4: gridRDD.forEach(z; => update accumulators)
5: calculate X and S from accumulators

6: wSumRDD = gridRDD flatMapToPair (¢, z; =>
7. w; = getWeightList(4)

8: for each j in w; do

9: if DISTANCE(, j) < h then

10 emit new pair(j, z; * w; ;)

11: end if

12: end for

13:).reduceByKey(wz1, wze => emit wx; + was)
14: end function

In algorithmic terms, aTHS is differentiated from THS in the second and third step. Algo-
rithm 9 describes the pseudo-code of the second step of aTHS. The main difference is in line 9,
where we check the distance between cells ¢ and j; if the distance is greater than the threshold h,
then the emission of a new key value pair does not occur (i.e., we do not broadcast the weighted
attribute value of cell ¢; to cell ¢;).

The third step of aTHS calculates the weight attribute sum and squared sum, by applying
a weight factor equal to zero, for cells ¢; which are located in a distance farther than A from
¢;. This change affects only the implementation of the get WeightSum and get WeightSquaredSum
methods, used in lines 5,6 of Algorithm 8.

3.6.4.2 Controlling the Error AG; In this section, we present an upper bound for the

value AG? (we refer the reader to [126] for the derivation of this result):

AG; < %‘X S P f (o, d) — f(p 1, d)
p>h

In summary, we can compute an upper bound for the error AG} introduced to the Getis-Ord

value of a cell ¢;, due to approximate processing using only neighbors at distance h. In turn, this

111

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

allows us to explicitly set the value h in Algorithm aTHS, in such a way that we can guarantee
that the maximum error introduced is quantified. In practice, an analyst can exploit our method
to trade-off accuracy for computational efficiency, making aTHS an attractive algorithm for

trajectory hot spot analysis over massive data sets.

3.6.5 Empirical Evaluation

In this section, we report the results of our empirical study on data of Pilot 3 of the project.
The data set used in the experiment consists of the positions reported by 56 vehicles for a period
of 1 year in the wider area of Greece. The size of this data set is approximately 1GB, so it is

reasonably large.

Figure 56: Hot spots discovered in the wider area of Greece: most hot spot cells are located in
Athens and Thessaloniki.

Figures 56-58 depict results derived by applying our technique for hot spot discovery on
the aforementioned data set. Different shades of red correspond to the hot spot value, so more
intense shades of red indicate higher hot spot value. Figure 56 indicates that most hot spots are
located in Athens and Thessaloniki, the two largest cities in Greece. This is reasonable, since
most of the data is located in these cities, so the result is correct but of limited use.

When we focus in the wider area of Athens, depicted in Figure 57, the results are more
meaningful, since one can clearly see hot spots in Koropi and Aspropirgos. Other hot spots can
also be recognized in Egaleo, Palaio Faliro and Vouliagmeni (in pink). Also, one can recognize
that different main avenues of the city seem to contribute to hot spots. In this chart, we depict
all hot spots that were identified, not the top-k hot spots.

Figure 58 shows the top-50 hot spots without using different shades of red, so other less

112

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[
+

- o
11 {!
T
:

ELTT

rEE
AL

111

1 il
T : T
I T

BEt

ACun|
110}
T

=i
1
11 T

Figure 57: Hot spots discovered when focusing on the area of Athens.

ITE T 7 A5 10 M EHANNESENN| [
| I} i P R >
it S iﬁ . o 8
=@ g L BT @ L =
Jokel - | LR W 0 s
f S g - B
A = Belra :
= i T TECELTL FT s ERim =
8 7 T : -
= TrE CEEERaSE f il i
L X AL T LT AATE) | I 2 It
FZERZENNEERS i b4 O : us 14
T E EEA AR r NS PR 7
AEEEA| 5 a3
2z a 3 .,;x.‘zf, L
A | 1
. S
it ! y 7 .
B W L L ST
B i
o] H Vi
B E 1 A A
+T 11 - s

oI : i
o T 1
] 7

==
N1
9|0t

Figure 58: Top-50 hot spots discovered when focusing on the area of Athens.

significant hot spots are suppressed. This also signifies the importance of computing a ranked
list of hot spots, since a data analyst can retrieve only the top-k cells to obtain more focused
results.

Regarding performance results and scalability, we refer to the experiments reported in our
published paper [126] in IEEE BigData’18. In summary, we report results using a data set of
approximately 90GB of spatio-temporal data in a cluster using 10 physical nodes, running Apache
Spark. The results show that our algorithms can compute hot spots over large data sets in a few
hundreds of seconds, depending on different parameters, such as spatial cell size and temporal
cell size. Also, the approximate algorithm aTHS is indeed able to speed up computation when

using a smaller value of h.

113

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.6.6 Summary and Future Work

In this work, we formulate the problem of Trajectory hot spot analysis, which finds many real-
life applications in the case of big trajectory data. We proposed two parallel data processing
algorithms that solve the problem, which are scalable for data of large volumes. Our first algo-
rithm (THS) provides an exact solution to the problem, but may be computationally expensive
depending on the underlying grid partitioning and the number of cells. Also, we propose an
approximate algorithm (aTHS) that practically ignores the contribution of cells located further
away from the cell under study, thereby saving computational cost. Perhaps more importantly,
we propose a method that can be used to bound the error in the approximation, for a given
subset of cells that are taken into account. Thus, we can trade-off accuracy for efficiency in
a controlled manner. Our implementation is based on Apache Spark, and we demonstrate the
scalability of our approach using real-life data.

In our future work, we intend to explore variants of the problem of trajectory hot spot
analysis, which is a problem that deserves further study. More concretely, we will address online
hot spot detection in a streaming context, where the aim is to detect hot spots and significant
changes in existing hot spots as new data arrive into the system. Another promising research
direction is extending this work to road networks, aiming to identify hot spots in the form of
edges or paths of the underlying graph representing the road network, instead of 3D regions in

the space-time domain.

114

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.7 Identifying business activity-travel patterns based on GPS data

In summary:

e (eneric question addressed: Identifying business activity-travel patterns based on GPS

data.
o Track&Know specific question: Big mobility data pattern detection.

e Novwelty / Advantage over existing methods: Business activity and travel features have
been described on a qualitative level; no methods exist yet to quantitatively analyse busi-
ness travel behaviour. The developed method here is novel in terms of identifying typical
activity-travel patterns associated with each business vehicle type and quantifying (using
numeric scores) how similar or different the travel practice of a specific company (or vehicle)

is to the typical behaviour of the corresponding vehicle type.

o FExperiments conducted: Testing on a TrackKnow Pilot dataset with quantitative and qual-

itative evaluations.
e Type of analytics: Descriptive analytics.
o Automation / TRL: TRL level 3 (proof-of-concept implemented and tested)

e Extension to other domains: The method is applicable for other types of mobility data,

e.g. mobile phone data.

3.7.1 Problem statement

As employers, suppliers and transport providers, organizations are responsible for the generation
of a large part of traffic flows on the transport network. However, despite the significance of
business travel to overall mobility, the underlying activity compositions of the movement and
the decision making process within organizations have not been well understood. This lack
of knowledge contrasts with a large body of work undertaken over the past years, which has
developed a theoretical and applied evidence base (e.g. activity-based travel demand models)
regarding personal travel behavior. Personal and business travel behavior share similarities but
also display differences. Both behavior exhibits a certain degree of spatial-temporal regularities
and sequential ordering across days. However, the types of activities performed and the duration
and visit frequency of the stops are different, while the factors based on which travel decisions
are made also vary. As a result, further research needs to be done in order to go from personal
activity-travel patterns up to business behavioral mobility knowledge, capable of supporting poli-

cies that are related to business travel. This is exactly the challenge, and if a method can be

115

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

found which helps to bridge this gap, the potential application of using the behavioral knowl-
edge is considerable. Particularly, given the increasing attention on the environmental effects
caused by business vehicles, both governments and organizations face problems of addressing a
radically changed economic landscape, pressing environmental issues, increasing driving safety,
and managing travel demand more efficiently. An improved behavioral mobility understanding
will thus help uncover business activities and travel features and explore factors that would lead
to addressing these problems and enhancing business travel in the aimed directions.

To this end, a new method has been proposed in this subsection, aimed to identify typical
activity-travel patterns from business travel and characterize travel behavior of specific compa-
nies or vehicles (and corresponding drivers) based on the derived patterns. Business travel refers
to trips made in the course of work for job-related obligations, and in this study travel on road
(instead of by rail or sea) is considered. Particularly, trips made by vehicles of six commonly
used types, including cars, buses, vans, trucks (including trucks-35t and trucks-3ax belonging to
medium- and heavy-duty trucks respectively), and motors (motorcycles), are analyzed. Vehicles
of these types and corresponding trips support various business activities and generate an array
of services, playing a pivotal role in the economy [11]. Cars enable location changes of personnel
to meet internal or external partners for business meetings or customer services, whereas buses
transport a group of passengers (e.g. school students or tourists) between spatially distributed
origins and destinations. Vans provide postal and courier services and mobile workshops, motors
deliver small items (e.g. food), while trucks transport large-size and heavy goods (e.g. stocks,
electronics and construction materials) or are used for essential public services (e.g. garbage
collection). The activities performed by different types of vehicles vary to a certain degree, in
terms of the spatial-temporal features (e.g. the visit frequency and visit time, activity duration,
travel time required, and sequential order) of the activities. The differences in these features
further lead to deviations in travel behavior associated with these vehicle types. In the proposed
method, the spatial-temporal features of stops (obtained from GPS trajectories of business ve-
hicles) are extracted, based on which stops are classified. Daily travel sequences composed of
the classified stops are subsequently formed. Activity-travel patterns are further identified from
the sequences of each vehicle type, from which travel behavior associated with the corresponding

type is inferred.

3.7.2 The proposed method

Specifically, the approach consists of five major steps as follows. (1) GPS data collected from
business vehicles are preprocessed and stops are extracted. (2) A set of spatial-temporal variables
characterizing each stop is defined, and Feature Selection Techniques are applied to choose the
most effective variables. Upon these selected variables, stops are classified. (3) The obtained
stops from each vehicle each day, along with their sequential order, form a stop-sequence, and
sequences of all vehicles of the same vehicle type are searched for stop-patterns by means of

Sequential Pattern Mining. (4) The derived patterns are further clustered based on Sequence

116

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Identifying business activity-travel patterns

Input: GPS trajectories | Data preprocessing and stop identification

v
Variable definition, feature selection and stop classification
Output: the activity-travel ¥
profile of each vehicle type; Stop-pattern mining for each vehicle type
travel behavior analysis of a ¥
company or a single vehicle Pattern clustering and activity-travel profile generation
v

Vehicle travel behavior analysis

Figure 59: The overall structure of the method

Alignment Methods; the resultant clusters, in combination with the sequence support of each
cluster, defines an activity-travel profile. (5) This profile characterizes typical travel behavior
performed by the corresponding vehicle type, based on which specific travel features of a set of
new vehicles are analyzed. Figure 59 outlines the approach, and the details can be referred to in
the paper [42].

3.7.3 Experimental results

The pilot use case 3 provided by the Vodafone Group are adopted for the experiment.

(1) Stop classification

Four variables characterizing key features of each stop were picked up by the feature selection
technique, including FreqPerDay (the probability to visit the stop each day), Duration (the
average duration over all visits to the stop), TimeFirst (the earliest time-of-day at the stop), and
TravelTime (the average travel time required between the stop and its previous stop). These
variables maximum distinguish stops made by different types of vehicles in terms of the spatial-
temporal dimensions, and they are further categorized using significant cutting values of these
variables (See Figure 60).

Based on these variables and their discrete values, stops are classified (See Figure 61). In
total, 36 stop classes are generated; an extra class ‘10’ is defined representing work places.

(2) The obtained stop-patterns and clusters

Figure 62 presents the clusters for three vehicle types including vans, cars and trucks-3ax.
In this table, each row represents a cluster, and the columns describe the properties of the
cluster. They include: the vehicle type (Type); major stop class (MC) (the most frequent class
in the patterns of the cluster); secondary stop classes (SC) (the remaining classes); the longest
pattern (‘Longest P’) and this pattern’s length (Len) (the number of stops in this pattern),
sequence support (Su) (the number of stop-sequences containing this pattern relative to that of

all sequences being searched for); the number of all patterns in the cluster (N) and the sequence

117

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

1 (low), if FreqPerDay < 0.02
FreqPerDay =| 2 (middle), if" FreqPerDay > 0.02 and FreqPerDay < 0.16
3 (high), if FreqPerDay > 0.16
1 (short), if Duration < 25min
Duration =| 2 (mddle), 7/ Duration > 25mm and Duration <140 min
3 (long), if Duration > 140min
1 (morning), #f TuneFust <10:30am

TimeFirst = _ :)
2 (day), if TumeFurst >10:30am
_ 1 (short), if TravelTime < 60min
TravelTime = . _ _
2 (long), if TravelTime > 60min
Figure 60: Variable cutting values
Class | Freq | Dur | First | Tra | Class | Freq | Dur | First | Tra | Class | Freq | Dur | First | Tra
11 1 1 |1 1 |41 |2 1 [1 1 |71 |3 1 |1 1
12 1 1 |1 2 42 |2 1|1 2 (712 |3 1|1 2
13 1 1 |2 1 |4 |2 1 |2 1 |73 |3 1 |2 1
14 1 1 |2 |2 (¢ |2 1 |2 2 (714 |3 1 |2 2
2 1 2 |1 1 |51 |2 2 |1 1 |81 |3 2 |1 1
22 1 2 |1 2 |2 |2 2 1 2 [s2 |3 2 |1 2
23 1 2 12 1 |53 |2 2 |2 1 (8 |3 2 |2 1
24 1 2 |2 [2 |54 |2 2 |2 2 (84 |3 2 |2 2
31 1 3|1 1 |61 |2 31 1 |91 |3 3|1 1
32 1 3|1 2 62 |2 31 2 (92 |3 3|1 2
33 1 3 12 1 16 |2 3 |2 1 |9 |3 3 |2 1
34 1 3 |2 (2 e+ |2 3 |2 2 (94 |3 3 |2 2

o

Note: the column ‘Class’ is the assigned class values; while ‘Freq’, ¢
FreqPerday, Duration, TimeFirst and TravelTime, respectively.

ur’, ‘First” and ‘Tra’ represent the variables

Figure 61: Stop classification and corresponding categorized values of the classification variables

support of the cluster (SuN) (the sum of Su over all the pattern); and the category (defined in
the next subsection).

(3) Cluster analysis and differences in clusters across vehicle types

The clusters across different vehicle types describe varied activity and travel features of busi-
ness trips, and they can be further grouped into four categories as follows.

Category 1 (a chain of stops): including clusters with the major class MC =(‘43’, ‘53", ‘73’,
‘837, ‘93’). This category depicts patterns consisting of a chain of multiple stops between two
consecutive work locations, and these stops are characterized with a middle-high visit frequency
(FreqPerDay>0.02), short travel time (TravelTime<60min) and being conducted during the day
(after 10:30am).

Each of the chains represents a sequence of stops that are performed in the corresponding

temporal order frequently. The chain can represent a combination of specific stop locations which

118

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Type MC SC Longest P Len Su N SuN Category
Vans 73 43,83 10-73-73-73-73-73-73-73-73- | 15 0.10 | 120 | 10.88 |1
73-73-73-73-73-10
83 53,73 10-83-83-83-83-83-83-10 8 0.13 | 37 3.24 1
43 73,83 10-43-43-43-10 S 0.12 | 25 2.73 1
53 83 10-53-53-10 4 0.16 | 4 0.47 1
71 73 10-71-73-73-10 5 012 | 1 0.20 2
81 83 10-81-83-10 4 0.12 | 9 0.75 2
41 \ 10-41-10 3 0.11 |1 0.06 2
13 \ 10-13-10 3 012 |1 0.07 3
Cars 83 53 10-83-83-83-83-83-10 7 0.14 | 56 3.92 1
53 43,83 10-53-53-53-53-10 6 0.18 | 12 3.93 1
43 53,83 10-43-43-10 4 012 | 6 0.80 1
93 53 93-93-93 3 0.11 |5 0.39 1
91 53 10-91-91-10 4 0.10 | 7 0.70 2
51 \ 10-51-10 3 0.11 | 1 0.06 2
13 \ 10-13-10 3 0.12 | 1 0.07 3
23 \ 10-23-10 3 012 | 1 0.06 3
Trucks-3ax | 83 \ 10-83-83-83-10 5 0.14 | 7 0.93 1
53 83 10-53-53-10 4 0.11 | 4 0.46 1
81 \ 10-81-81-10 4 012 | 9 0.79 2
51 53,83 10-51-83-10 4 0.12 | 8 0.78 2
84 \ 10-84-10 3 0.13 | 1 0.06 4
54 \ 10-54-10 3 0.13 | 1 0.12 4
52 \ 10-52-10 3 0.11 |1 0.06 4

Figure 62: The clusters for vans, cars and trucks-3ax

are often visited in the same order across days (e.g. for a single vehicle). More generally, a chain
accommodates different sequences of stop locations, but delineates a unique sequence in terms
of the classes of the stops. The geographic locations of the stops in a chain may not be the same
across days, but the classes (spatial-temporal features) of the stops are identical. For instance,
the pattern ‘10-83-83-83-10’ from trucks-3ax reveals that three stops of ‘83’ are often made in a
chain between two consecutive stops at work. Each of these stops could be at the same location
(thus having the same spatial-temporal features) across different days, while it may also be in
different places but belonging to the same classes (‘83’). By extracting spatial-temporal features
of stops and using these features (stop classes) as basic letters to construct stop-sequences, instead
of directly utilizing geographic locations of the stops, stop-sequences across different vehicles can
be compared, and patterns that reflect common activity and travel behavior across the vehicles
can be identified.

It should be noted that in between each two adjacent stops of a chain, there could be other
stops made by the corresponding vehicle. These stops are infrequent (in terms of stop classes)
and thus not present in the pattern. Moreover, it was also observed that, the major class (MC)
in a chain accounts for most of the stops and the secondary classes (SC) normally have only one
(or at most two) instances. For example, over all the patterns (120 in total) in the cluster of
MC=(‘73’) for vans, 63 patterns are composed of ‘73’ alone, with the longest pattern as ‘10-73-73-
73-73-73-73-73-73-73-73-73-73-73-10’; while 44 and 11 have only one occurrence of the secondary
class ‘43’ and ‘83’ respectively (e.g. ‘10-73-43-73-73-73-73-73-10" and ‘10-73-73-73-83-73-10"). In

contrast, solely two remaining patterns contain two instances of the secondary classes, including

119

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

Category 1 |1 |1t |1 |1 |2 |2 |2 [2 |2 |3 [3 |4 |4 [4 |4
Major class (MC) | 43 | 53 | 73 [83 | 93 | 41 [51 |71 |81 [91 [13 |23 |52 |54 |74 | 84
Vans y |y |y |y y v

Motors y |y |y |y y |y y y |y

Trucks-35t y v v y v v v

Trucks-3ax ¥ y v v ¥ ¥
Buses y y y |y |»
Cars y |y y |y y y |y

y
Note: the rows refer to vehicle types, and the columns to categories and major classes. A cell with ‘y” indicates
the presence of the cluster in the corresponding vehicle type, while a blank cell denotes the otherwise.

Figure 63: Similarities and differences in the clusters across vehicle types

‘10-73-73-43-43" and ‘73-73-83-83-10". This implies that stops of the same classes (featured with
middle-high visit frequency and short travel time) are often planed together during the day.

Category 2 (morning stops): including clusters with MC=(‘41’, ‘51’, ‘71’, ‘81’, ‘91’). This
category comprises patterns in which at least one of the stops is made in the morning (before
10:30am).

Category 3 (infrequent stops): including clusters with MC=(‘13’, ‘23’). The distinctive fea-
ture of this category lies in the low visit frequency of the major stops (FreqPerDay<0.02).

Category 4 (long-travel-time-stops): including clusters with MC=(‘52’, ‘54’, ‘74’, ‘84’). Cat-
egory 4 accommodates patterns of stops with long travel time (TravelTime > 60min), marking
an important difference from the other categories.

The above four categories characterize activity and travel features of business travel from
various aspects, based on which similarities and differences between vehicle types can be delim-
ited (See Figure 63). Vans, motors and trucks-35t share a long chain of (short-middle duration)
stops (i.e. ‘43’, ‘53", ‘73", ‘83") (in Category 1), and the longest pattern length is 15, 9 and 8 re-
spectively. These vehicles also expose similarities of regularly travelling to an infrequent location
(FreqPerDay<0.02) (in Category 3) for possibly exploring new business opportunities. Likewise,
trucks-3ax and buses are also characterized with chains of stops (‘83’, ‘563’). Nevertheless, com-
pared to the previous vehicles, the length of these chains is shorter (i.e. the maximum length
being 5 for each type) and the duration of these two stops is middle (25min<Duration<140min).
Furthermore, these two types have no patterns of infrequent stops, but demonstrate extra pat-
terns featuring long-travel-time-stops (TravelTime>60min) (in Category 4). The remaining type
of cars exhibits a high level of deviations from the other types. One outstanding feature of car
is having patterns with long duration (Duration>140min) stops (‘91’, ‘93’). Moreover, similar
to vans, trucks-35t and motors, cars do not have patterns with long-travel-time-stops, implying
that most of the car trips are made within an hour.

(4) Travel behavior analysis on a specific company or vehicle

For each vehicle type, the derived clusters along with the sequence support (SuN) form the
typical activity-travel profile, based on which travel behavior of a specific company or vehicle can
be analyzed. In this process, GPS data of a set of (or a single) sample vehicle(s) (of a certain type)

from the study company are first extracted and converted into stop-sequences. Stop-patterns are

120

o«}
\}rrack & Know

D4.1 Analytics for mobility patterns detection

Company | Category 1 Category 2 Category 4 Middle SD Extra patterns

1950 Below (0.18) Below (0.35) | Normal (1.14) | Normal (0.64) | \

3690 Above (1.78) | Normal (1.14) | Above (2,21) | Above (1.78) | 10-62-10 (0.08)

5040 Normal (1.12) Above (1.87) Normal (0.65) | Normal (1.13) | 10-91-10 (0.17)

5940 Normal (0.53) Normal (0.66) | Normal (0.87) | Normal (0.71) | 10-94-10 (0.31)

6060 Normal (0.60) | Normal (0.53) | Below (0.16) | Below (0.39) | 10-63-10 (0.13); 10-41-10 (0.1)

6480 Below (0.09) Below (0.08) | Below (0.05) | Below (0.09) | 91-91-91 (0.14); 10-63-10 (0.10)
92-92-92(0.06)

H2020-ICT-2017-1

Note: the columns from the left to right denote the companies, Category 1, 2 and 4, middle stop-duration, and extra
patterns and the corresponding sequence support which do not fall into any previously-derived common clusters.
For trucks-3ax, Category 3 is not present, and all the major classes have middle stop-duration. For the ratios, three
levels are used including: below (<0.5), normal (0.5~1.5), and above (>1.5) (in bold).

Figure 64: Ratios on trucks-3ax from six companies

Vehicle | Category 1 Category 2 Category 4 Middle SD Extra patterns

Vi1 Below (0.26) | Normal (1.05) | Above (3.09) | Above (1.70) | 10-64-10 (0.24); 10-74-10 (0.24)
V2 Normal (0.58) | Below (0.25) | Above (2.22) | Normal (1.17) | 10-21-10 (0.16); 10-24-10 (0.16)
V3 Above (1.83) Normal (0.59) | Above (1.90) Above (1.51) 92-73-10 (0.27); 10-62-10 (0.14)
V4 Normal (0.90) | Normal (0.91) | Normal (1.49) | Normal (1.15) | 10-22-10 (0.18); 10-32-10 (0.18)
V5 Above (2.89) Above (1.59) Above (2.58) Above (2.39) 10-71-10 (0.30); 10-21-10 (0.12)
Ve Above (2.43) Above (2.23) Above (2.42) Above (2.11) 10-71-10 (0.38); 10-62-10 (0.14)

Note: the columns from the left to right denote the vehicles, Category 1, 2 and 4, middle stop-duration and extra
patterns

Figure 65: Ratios on trucks-3ax from six individual vehicles from the company ‘3690’

then identified and clustered; let SuN’ be the obtained sequence support of each cluster. Next, a
set of ratios are defined, including R-clu (the ratio between SuN’ and SuN of the corresponding
cluster), R-cat (the average of R-clu over all clusters in a category), and R-short, R-middle and
R-long (the average of R-clu over the clusters that have the major class MC with short, middle
and long stop-duration, respectively). These ratios describe the deviations between the sequence
support of the sample vehicle(s) and the typical sequence support derived from all vehicles (of
the corresponding type) across all companies in the training data. A larger (e.g. >1.5) or smaller
(e.g. <0.5) value suggests a higher or lower percentage of stop-sequences of the sample vehicle(s)
which match patterns of the corresponding cluster (R-clu), category (R-cat), or level of stop-
duration (R-short, R-middle or R-long), than the average percentage of such sequences from a
representative vehicle of this type. Figure 64 illustrates the obtained ratios on trucks-3ax from
six (transport or construction) companies, while Figure 65 presents the values for six individual
vehicles from one (‘3690°) of the above companies.

From the above two figures, different ratios were noticed, demonstrating variations in activity
and travel practice across companies or individual vehicles. From these results, novel insights
into travel behavior can be gained, providing a deep understanding of general travel features as
well as specific features of the companies (or vehicles). Moreover, these results can be further
utilized on driving safety analysis. Due to the inherent nature of the jobs, commercial vehicle
drivers are more involved in travelling, leading to more stress and tiredness particularly over long
hours of journeys. This increases the risk of crash or other safety-critical events, making safe

driving a great challenge for business travel. Research has been carried out to identify significant

121

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

factors that are related to driving safety. Apart from drivers’ social-economic backgrounds, work
and driving characteristics are found as important factors. One of the characteristics concerns
driving time; traffic rush hour is considered as a critical timing for driving safety [88]. Driving
safety also decreases as the duration of continuous driving gets longer, especially beyond 4 hour
[80]. Similarly, the additional time for non-driving activities at stops (e.g. loading-unloading
or waiting in queues for trucks) can also increase drivers’ fatigue [1]. Moreover, it was found
that a proportion of drivers who drive to an unfamiliar place may have difficulties in finding
parking locations, leading to a risk of driving as they have to divert attention (e.g. by using
mobile phones) in searching for parking [88]. These characteristics affecting driving safety can
be reflected by these ratios. For instance, a high value of R-cat for Category 1 (e.g. the company
‘3690 and vehicles V3, V5 and V6) would suggest a long trip chain with more stops. Likewise,
a high value of R-cat for Category 2 (e.g. ‘5040’, V5 and V6), 3, or 4 (e.g. ‘3690’, V1-V3 and
V5-V6) indicates more travel in the morning rush hour, more stops that are unfamiliar to the
drivers, and more long-time continuous driving, respectively. These trips would lead to longer
consecutive time of working and less breaks during the trip chain, more stress from the morning
driving, more difficulties in finding parking places, and /or longer continuous driving time. If these
trips are performed frequently and become routine travel features of a company (or vehicle), this
would potentially increase drivers’ fatigue and impair driving performance, leading to high risks
of accidents. These ratios would be adopted as additional factors for the analysis and prediction

of driving safety, thus adding an extra dimension of travel behavior aspects to the safety research.

122

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.8 Semantic Enrichment of Trajectory for Cross-Scale Analysis

In summary:

e Generic question addressed: Adapting vehicle trajectory simplification process to the ex-

ternal geographical context.

o TrackéKnow specific question: Big mobility data simplification for supporting dashboard

visualization (D5.3)

e Nowelty / Advantage over ezisting methods: A computationally efficient and effective new
trajectory method that can adapt to external geographical context, which provides a dif-
ferent concept perspective from existing geometry-based methods. Parameters are simply

for tuning. The method can be embedded as a module into the dashboard workflow.

e FExperiments conducted:Tested on a TrackKnow Pilot dataset with qualitative and quanti-

tative evaluations.
e Type of analytics: Descriptive analysis
o Automation / TRL: TRL level 3 (proof-of-concept implemented and tested)

e Faxtension to other domains: The method is applicable for GPS trajectories of other moving

objects, e.g., migrating birds and vessels.

3.8.1 A POI-Quadtree-based Variable-Resolution Enrichment Model for Trajec-

tory Simplification

Big GPS trajectory datasets can have redundant spatio-temporal information for applications.
The information redundancy introduces extra time on computing. Therefore, trajectory simplifi-
cation is often a key preprocessing step before the actual data analysis. Many existing simplifica-
tion methods focus on the geometric information from a trajectory per se. Conversely, methods
considering geographic context often fail to provide spatially adaptive simplification or require
complex parameter settings to achieve this task. We implemented a novel two-stage adaptive
trajectory simplification method, embedding spatial indexing, enrichment, and aggregation in
an integrated process. The first stage employs a quadtree for the subdivision depending on the
density of geographic context features (e.g., POIs), leading to a variable-resolution representation
of the area. The second stage aggregates trajectory waypoints locating in the same quadtree leaf
node into a representative point, making the aggregation adapting to the spatial layout of the
geographic features in the area of interest. Evaluation with a sample set of the VFI trajectory

data shows that the new approach can automatically simplify trajectory segments at variable

123

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

compression ratios, with greater simplification in areas with sparse context features (e.g., rural)
and less simplification in areas with dense context features (e.g., urban). More importantly, the
method can still preserve a variety of inter-trajectory distances between original trajectories and
simplified ones, while significantly reducing the computing time. More details are reported in
Section 2.2 - 2.4 of D5.3 and [50][51].

3.8.2 The Application of Variable-resolution Enrichment Model for Cross-scale Vi-
sual Analytics on Dashboard

Visualizing a big set of raw trajectory waypoints is often challenging as it usually requires high
network bandwidth and computational capacity on the browser. The efficiency of the quadtree-
based hierarchical structure for the enrichment and simplification of trajectories allows to transfer
the simplified big trajectory data to be visualized on a web-based dashboard easily while still
preserves the main characteristics of the original trajectory and provides some capacity to in-
teract with the raw waypoints. We implemented a web-mapping based plugin that enables such
visualization on our dashboard views (Figure 66). The plugin can adjust spatial details of a
trajectory to different spatial scales as end users zoom in and out the maps. The integration of
the plugin and the interactive map thus allows multi-scale visual analytics on the trajectories.

More details were reported in Section 2.5 of D5.3.

124

.@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

- i ke
| =R
H -
H [}
;Zf'{ Leaflet | Map data @ OpenSireeiMap contributors
10200:2017-07-04 0 10200:2017-07-05
() Show simplified trajectory
P 2wl Tiainiviniais ool 'y aiacl R 1 s T
. /Z Eheuoiva p
— b // i
i : s " = P D
K K §= pte ‘é" AT EC:
H 5, v 1P,
| Pl Euw e B
v & 7
3 T) e = ST 2 TEpLaa
ZaAaplvp b b
- N g =i B - £ },',: i e s
ATEAGKLG - L- - : i
L : = A |
---------- B e - vt
[
ALOVTELD '.i : \n
. 3 :
4 Bevigéloge
opwni- 2
= S} Mapkériouko | A
1
-
A = - 7 i HE Leaflet | Map data & OpenStrestMap contributors

7 10200:2017-07-04 10200:2017-07-05
) Show simplified trajectory

Figure 66: Visualization of a trajectory on top of the POI-quadtree by the plugin. The POI-
quadtree nodes that are passed by the trajectory are highlighted. The highlighting is dynamically
rendered at different spatial scales.

125

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.9 Genetic p-Median Solver for Mobility driven Location-Allocation

In summary:

e (eneric question addressed: What is the best place to locate resources to ensure travel

times and kept to a minimum?

o TrackéKnow specific question: Using mobility information can recommendations be made

to help optimise location of facilities such as charging stations or clinics?

e Novelty / Advantage over existing methods: Open-source, utilises Genetic Algorithm, node

level parallelism and Apache Spark parallelism, takes time (along with distance) as a cost.

e FExperiments conducted: Analysis of Location-Allocation of Medical devices for Healthcare

pilot.
e Type of analytics: Descriptive analytics

e Automation / TRL: 8 (docker container available to reuse, based on previous TRL5 models

and methods, results validated against commercial tools)

e FExtension to other domains: Can be applied to many domains that require location-

allocation.

3.9.1 Description of Problem and Approach

Location-allocation problems typical deal with provisioning of resources between facilities based
on historic demand. The p-median approach is one such model that aims to minimise the
total demand-weighted distance between the demand points and the facilities. This NP-Hard
problem aims to locate p facilities to serve n demand, by minimising the total demand-weighted
distance between the facilities and the demand. Given the computational complexity of the p-
median, several approaches have been proposed to solve problems in polynomial time. Solutions
using trees [59] and heuristics (metaheuristics [116], Lagrangian heuristics [33], etc.). Several
approaches using genetic algorithms have also been proposed to leverage the power of Al in
solving the p-median problem in polynomial time [20][6].

For Track&Know the p-median solver plays an important role in translating mobility informa-
tion into policy and management recommendations. Plugging into the mobility data processing
pipelines of Pilot 1: Insurance and Migration to EV, and Pilot 2: Healthcare Service Optimi-
sation, the p-median solver can provide important business insights for each domain. In the
case of migration to electric vehicles, once journey start/end points are identified these can be

added to the p-median solver that can recommend location and number of chargers required

126

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

in the geographic area (residential stop points are stripped out). Within the healthcare service
the p-median solver can provide location and frequency for pop-up clinics, or service capacity

recommendations on fixed points within the catchment road network.

3.9.2 Methodology

For Track&Know , the project has adapted the Genetic Algorithm approach to the p-Median
solver proposed by Alp and Erkut (2003)[6]. This section covers the tool pipeline and the pre
and post-processing, and the next section, 3.9.3 covers the specific implementation of the genetic
p-median component.

The current implementation of the p-median module is unconstrained by capacity parameters
at the facilities. By default, the placement of facilities is done by dividing the catchment area
into a geographic grid. The module can also be invoked and provided with a fixed set of locations
for the facilities and then the optimal number of facilities is calculated in a technique defined as

conditional p-median.

3.9.2.1 Unconditional p-Median When not providing the solver fixed locations, the mod-
ule needs to establish a geographic area in which to calculate the p-median. The consumes data
from the Track&Know platform using either topics of trajectory data or specific topics that
give start-end points of journeys (e.g. patient appointment information). Reading in the data
a geographic bounding box is created giving a 0.1-degree buffer on all sides. This creates the
catchment area on which the p-median will be performed. Ideally an offline process is required
to filter out significant outliers.

The larger the geographic area the more the processing complexity as it would increase the
number of grid squares. The smaller the sizes of the grid square the more calculations that need
to take place and the more possibilities for the value of p. This is why it is better to start the
p-median solver with a smaller geographic catchment area and prune demand points that fall
outside this region, (a) and (b) in Figure 67. Further, a larger area with no demand in many
grid cells will create a sparse matrix and may also bias the location decisions.

The Track&Know p-Median by default is not restricted to either the P existing facilities, or
the n demand points. The catchment area is divided into a grid based on user input parameters.
The density of the grid can be adjusted by providing degrees of latitude. Each cell in the grid
is a possible location for a facility, (c¢) in 67. There is a 1 to 1 mapping for facilities to grid
squares. This approach allows for transferability to other geographic regions and can deal with
unoccupied locations. The resultant output of this stage will be an m x n matrix with the corner
coordinates and the Euclidian centre point for that grid square.

With the catchment area divided into a grid and the demand points pruned, the implemen-
tation then calculates the demand for each grid square. This is done by tallying the number for
demand points that exist within each cell, by using the geographic location of the demand point

and then testing against the corner coordinates of that grid cell. Programmatically this is done

127

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

(a)

(£)
p-Median Analyser

Figure 67: Figure depicting the p-Median workflow. (a) Catchment area definition, (b) map-
ping >97% of the service users in the catchment, (¢) Creating a grid based on user supplied
granularity, (d) merging the grid and users to determine demand per grid square, (e) calcu-
lating distances between each grid square, (f) a genetic algorithm to calculate the P-optimal
locations/grid squares based on distances and demand (g) Resultant output of optimal locations
for resource allocation, (h) final GeoJSON output for dashboard integration

by traversing the matrix from (0,0) -> (m,n) by cell by row and once a demand point is binned it
is not considered when demand for the next cell is calculated. Therefore, if a point exists on the
edge of a grid cell then it is only assigned to one cell and is not double counted. This generates
an m n matrix which holds the demand value (Figure 67 (d)).

To calculate the cost between each grid-square a deployment of a customised OpenRouteSer-
vice (ORS) ?? that is integrated within the Track&Know platform is used. ORS can provide
either the road distance (in m) or the journey time (in sec), and these values can be used as
costs. The centre of each grid square is used, and ORS is configured to find the closest road
within two kilometres of the centre point. Before running the calculate the grid cell centre is
checked to be on land using the Python Basemap tool. If the centre is not on land, then in a

clockwise manner, starting bottom left, each corner is tested to be on land. The first corner that

128

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

does map to land is used and ORS is set to only snap to a road within 350m of the corner. If
there is no valid corner point or no possible road for ORS to snap to then the cell is marked
off as a non-feasible location. The code to evaluate this matrix is parallelised to utilise multiple
threads and cores through the Python Pools framework. The resultant optimisation reduces the
execution time from 8 hours to 15 minutes to evaluate a matrix of 1000 x 1000 (1M cells).

This resultant matrix is 'm z n’ x 'm z n’, with each cell mapping across all other cells (Figure
67 (e)). Typically, in this configuration the matrix is meant to reflect over the diagonal, however,
as the distance/time value is calculated using the underlying road network the mirrored cell will
not contain the same value. Due to roundabouts and one-way systems, the journey from Cell 1
to Cell n will not equal the journey back from Cell n to Cell 1.

Using the costs and the demand matrices, step (f) performs the p-median, optimising by
minimising distance or time of journey based on demand (see: Section 3.9.3). The simulation
runs several times each for p from 1 to ‘X’ as specified by the user.

The resultant output is a set of GeoJSON'’s for each value of p. Contained within the output
is the total distance travelled or time taken commuting by all demand points, and the recommen-
dation of locations for the p facilities. The distance or time values when plotted should create
an elbow curve where a point occurs after which inserting a new facility does not significantly
improve distance/time value. The user can use this graph to decide which value of p is most
favourable.

The output GeoJSON’s are read into the Track&Know dashboard and visualised both on a
map and using a graph. Other metrics such as max distance travelled by a single demand point,

average distance, and total distance are also given to the user.

3.9.2.2 Conditional p-Median Steps (b) — (d) can be replaced with a set of fixed facilities
(F) for the p-Median function to calculate the optimal p out of F. The demand is calculated by
tallying demand points based on proximity to facilities. The distance between the demand point,
d, is calculated against all F facilities and the minimum value (closest facility) is used to assign
demand. The distance or time optimisation then takes place by identifying distances between
each p.

The remaining pipeline of the tool is the same as for unconditional p-Median.

3.9.3 Implementation

3.9.3.1 p-Median Function The formulation of the p-median problem utilised by the Track&Know
project is the one by ReVelle and Swain [154]. This is an unconstrained formulation of the prob-
lem as it does not take facility capacity into account when making location-allocation decisions.
The other consideration is the 1-to-1 mapping of a demand point to a facility. i.e. a demand
point can only be served by exactly one facility. Equation (1) is the objective function of the
model, where the total demand-weighted distance between the demand points and facilities needs

to be minimised.

129

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

n
minZwidijxij (22)

i=1

Ti; <y Vi, (24)
> yi=np, (25)
j=1
zi; =00rl Vi, 7, (26)
y; =0orl V7, (27)
where
n = total number of demand points (28)
1, if pointiisassignedto facilitylocated at point j, (20)
T =
! 0, otherwise,

1, ifa facilityislocated at point j, (30)

0, otherwise,
w; = demand at point i, (31)
d;; = travel distance between points i and j, (32)
p = number of facilitiestobe located. (33)

3.9.3.2 Genetic Solver While many heuristic approaches to solving the p-Median problem
have been proposed, the genetic algorithm proposed by Alp and Erkut (2003)[6], has been found
through experimentation to be efficient and whose results are comparable to commercial location-
allocation solvers offered in packages such as ArcGIS.

To setup the genetic algorithm, we use the objective function (1) as the fitness function for
the evaluation of the quality of a chromosome. The genes in the chromosome correspond to the
facility number/grid cell number, e.g. for a 10 by 10 grid the genes would be labeled from 1
to 100. The length of the chromosome will be governed by the value of p, e.g. for a 4-median
problem the chromosome would have 4 genes. [10, 23, 5, 97] is a valid chromosome representing
solutions in grid cells’ 5, 10, 23, 97.

P(n,p) = max{Q, [%lnElS)“ }d (34)

130

@Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

To start the solution the genetic algorithm needs a population size that remains fixed. [154]
provide a formula (13) to evaluate the population size P, which is dependant on S (the number
of all possible solutions) and d (integer value of demand density). The population size is large
enough to encapsulate all the genes (i.e. every location). The population is then initialised by
sequentially added each gene to the chromosome. So in a 4-median solution the first chromosome
would be [1, 2, 3, 4], and the second would be [5, 6, 7, 8] etc. The fitness of each chromosome is
calculated and this value is held to be compared against the generated chromosomes.

When the simulation runs, two parents are randomly selected from the population and their
chromosomes merged. The resultant 8-gene chromosome is not valid and therefore 4 genes have
to be dropped. The greedy deletion heuristic does not delete genes that exist in both parents.
Once the chromosome is of length p, the fitness is calculated and compared to the fitness of the
population. If the fitness is better than the worst performing chromosome in the population,
then the new chromosome replaces the worst one. This process is repeated until one solution

remains.

Genetic p-Median ArcGIS
= E E I‘\!t"l‘.-—'.lll'\iln-!.
= Camsn s rmard
""I ; & Fani-Lwmand
F \\ gz
! z
BT
: ; = ’
I om Lo "
i R 5] Ly ;
1 . e H g
- T = - -
-—.______-__' £E -1 0 TrEmswsaaililInyE
——
i a b 2 "] FH x®
R R R NN
Solution for p=10 P lacitise
- W
gy Lo
ey Mo
- 4] o “ o 5
[Y)
- Posfursagn #
) ’ ramcsry
" s
i ‘!'r
] &
" i B
. Bory S Ecmancly
& " " .
e & commapefl]
. m
| Bl -
N) Fags
r > * ik
Laaw
. 5 varicer [Croimr -
£ Avas i C

Figure 68: Result of the Track&Know Genetic p-Median solver and a comparison to a commercial
solution

131

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3.9.3.3 Code Parallelisation To parallelise the implementation of p-Median to make it
Big Data ready the implementation of the genetic algorithm conforms to the solution presented
by Magbool et. al [114]. The Scalable Genetic Algorithm (S-GA) implementation that has
been developed under the Boost 4.0, LAMBDA, SLIPO, and QROWD projects, provides a
parallelisation strategy that utilises the Apache Spark framework. This framework is also utilised
within the Track&Know Platform (see: D2.1).

The performance results of the code, will be reported in subsequent deliverables.

3.9.4 p-Median Application

The p-Median tool will be used in the Healthcare pilot to provide mobility aware location-
allocation solutions for medical facility placement, and the Electric Mobility part of the insurance
pilot to find optimal charge point locations. Initial tests have been run against the healthcare
datasets using both the p-median solver and a commercial tool ArcGIS (Figure 68). While the p-
medians are slightly different in the exact placement of facilities, both solutions identified specific
key hot-spots and were in agreement in terms of optimised numbers. The differences recorded
here are due to ArcGIS using a conditional p-median approach. Further testing will be carried

out as part of pilot activities and reported in D6.2, D6.3 and D6.6, respectively.

132

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

4 Conclusions

In this deliverable D4.1, the BDA Toolbox is described in detail regarding all the aspects of the
development. Each individual component is presented separately, including the formalization of
the problem it addresses, the design of the functionality provided, as well as the experimental
evaluation of its implementation.

Although autonomous, the presentation of the BDA components show that the Toolbox is
indeed a collection of closely collaborating modules that provide top-level BDA functionalities,
ranging from customized pre-processing and data restoration & transformation per-component
to trajectory analytics & clustering, discovery of mobility networks & personalized trips, hotspot
analysis, driver behaviour profiling, traffic flow dynamics, etc. Hence, the BDA functional re-
quirements are met and at the same time the Toolkit is versatile and modular enough that it
can be employed to a much wider range of challenges than what is included in the scope of
Track&Know.

133

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

5 Annex I: Ethics report

A. PERSONAL DATA

1. Is personal data going to be processed for the completion of this deliverable?

(a) If “yes”, do they refer only to individuals connected to project partners? Or to third

parties as well?

We have used anonymized data from the data providers in the project, corre-
sponding to the three pilots. The anonymization process took place prior to

data release for usage in Track&Know.

2. Are “special categories of personal data” going to be processed for this deliverable? (whereby
these include personal data revealing racial or ethnic origin, political opinions, religious or
philosophical beliefs, and trade union membership, as well as, genetic data, biometric data,
data concerning health or data concerning a natural person’s sex life or sexual orientation)
No.

3. Has the consent of the individuals concerned been acquired prior to the processing of their

personal data?
(a) If “yes”, based on the Project’s Consent Form? On a different legal basis?

Yes, the partners that act as data providers in the project have acquired consent
from individuals prior to data processing. In the case of personal data, a consent
form has been used. In case of data coming from one of the clients of a data
provider, appropriate agreements have been made about the usage of such data,

always appropriately anonymized.
4. In the event of processing of personal data, is the processing:
(a) “Fair and lawful”, meaning executed in a fair manner and following consent of the
individuals concerned? Yes.

(b) Performed for a specific (project-related) cause only? The usage of any data within
the Task 4.1 and Deliverable D4.1 concerned only implementation and
testing purposes of the developed tools. For the fulfilment of these tasks
appropriately anonymized and de-identified data samples were provided

by partners.

(¢) Executed on the basis of the principle of proportionality (meaning that only data that

are necessary for the processing purposes are being processed)? Yes.

(d) Based on high-quality personal data? (see previous)

134

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

5. Are all lawful requirements for the processing of the data (for example, notification of the

competent Data Protection Authority(s), if applicable) adhered to? Not applicable.

6. Have individuals been made aware of their rights (particularly the rights to access, rectify
and delete the data)? Yes, the partners that act as data providers in the pro-
jecthave acquired consent from individuals prior to data processing, and took

careof informing them of their rights.
B. DATA SECURITY

1. Have proportionate security measures been undertaken for protection of the data, taking

into account project requirements and the nature of the data? Yes.
(a) Brief description of such measures (including physical-world measures, if any)

There have been a number of security measures in place including: (a) remote
access to the machines used only by SSH, (b) data resides on the platform only
during the execution of experiments, (c) access to data storage and data feeds

require authentication.

2. Is there a data breach notification policy in place within your organisation? Yes.
C. DATA TRANSFERS

1. Are personal data transfers beyond project partners going to take place for this deliverable?
No.

(a) If “yes”, do these include transfers to third (non-EU) countries?

2. Are personal data transfers to public authorities going to take place for this deliverable?
No.

(a) Do any state authorities have direct or indirect access to personal data processed for
this deliverable?

3. Taking into account that the Project Coordinator is the “controller” of the processing and
that all other project partners involved in this deliverable are “processors” within the same
contexts, are there any other personal data processing roles attributed to any third parties
for this deliverable? No.

D. ETHICS AND RELATED ISSUES

1. Are personal data of children going to be processed for this deliverable? No.

2. Is profiling in any way enabled or facilitated for this deliverable? Yes, however GDPR

compliance measures are applied.

135

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

3. Are automated-decisions made or enabled for this deliverable? No.

4. Have partners for this deliverable taken into consideration system architectures of privacy

by design and/or privacy by default, as appropriate? Yes.

5. Have partners for this deliverable taken into consideration gender equality policies? Not

applicable.

6. Have partners for this deliverable taken into consideration confidentiality of the data re-

quirements? Yes.

136

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

References

(1]

2]

13l

[4]

[5]

[6]

7]

18]

9]

[10]

[11]

[12]

Williamson A. and Friswell R. The effect of external non-driving factors, payment type and
waiting and queuing on fatigue in long distance trucking. Accident Analysis and Prevention,
58:26-34, 2013.

Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan, and
Erin Taylor. Subtrajectory clustering: Models and algorithms. In PODS, pages 75-87,
2018.

Louai Alarabi and Mohamed F. Mokbel. A demonstration of st-hadoop: A mapreduce
framework for big spatio-temporal data. PVLDB, 10(12):1961-1964, 2017.

Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. St-hadoop: A mapreduce
framework for spatio-temporal data. In Proceedings of the 15th International Symposium
on Spatial and Temporal Databases, SSTD, pages 84-104, 2017.

A. Alexandridis, E. Chondrodima, and H. Sarimveis. Radial basis function network training
using a nonsymmetric partition of the input space and particle swarm optimization. IEEE
Transactions on Neural Networks and Learning Systems, 24(2):219-230, 2013.

Osman Alp, Erhan Erkut, and Zvi Drezner. An efficient genetic algorithm for the p-median
problem. Annals of Operations research, 122(1-4):21-42, 2003.

F. Altché and A. de La Fortelle. An Istm network for highway trajectory prediction. In
2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
pages 353—-359, Oct 2017.

Gamallo Alvaro, Gonzalez and Fraile-Ardanuy. Estimation of electric vehicles’ consumption
based on their mobility. Section 3.3.3. of Deliverable D6.1 of the DataSIM Project, 2013.

Theodoros Anagnostopoulos, Christos Anagnostopoulos, and Stathes Hadjiefthymiades.
Mobility prediction based on machine learning. In 12th IEEE International Conference on
Mobile Data Management, MDM 2011, Luled, Sweden, June 6-9, 2011, Volume 2, pages
27-30, 2011.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jérg Sander. OPTICS:
ordering points to identify the clustering structure. In SIGMOD, pages 49-60, 1999.

European Automobile Manufacturers Association. Acea report vehicles in use europe. 2019.

Samet Ayhan and Hanan Samet. Aircraft trajectory prediction made easy with predictive
analytics. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
21-30, 2016.

137

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

[26]

Samet Ayhan and Hanan Samet. Time series clustering of weather observations in pre-
dicting climb phase of aircraft trajectories. In Proceedings of the 9th ACM SIGSPATIAL
International Workshop on Computational Transportation Science, IWCTSQSIGSPATIAL
2016, Burlingame, California, USA, October 31 - November 3, 2016, pages 25-30, 2016.

Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. Forecasting across time series
databases using recurrent neural networks on groups of similar series: A clustering ap-
proach. Expert Systems with Applications, 140:112896, 2020.

Kyle Banker, Peter Bakkum, Shaun Verchand, Douglas Garrett, and Tim Hawkins. Mon-
goDB in Action. Manning, 2014.

A. Bender, G. Agamennoni, J. Ward, S. Worrall, and E. Nebot. An unsupervised approach
for inferring driver behavior from naturalistic driving data. IEEE Trans. Intell. Transp.
Syst., 16(6), 2015.

L. Bergasa, J. Nuevo, M. Sotelo, R. Barea, and M. Lopez. Real-time systemformonitoring
driver vigilance. IEEE Trans. on Intell. Trans. Sys., 7(1), 2006.

Ella Bingham. Finding segmentations of sequences. In Inductive Databases and Constraint-
Based Data Mining, pages 177-197. Springer, 2010.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Burcin Bozkaya, Jianjun Zhang, and Erhan Erkut. An efficient genetic algorithm for the
p-median problem. Facility location: Applications and theory, pages 179-205, 2002.

Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Proceedings of the 31st International Conference on Very Large
Data Bases, VLDB ’05, page 853-864. VLDB Endowment, 2005.

Ronald Bremer. Qutliers in statistical data. Taylor & Francis, 1995.

Maike Buchin et al. An algorithmic framework for segmenting trajectories based on spatio-
temporal criteria. In SIGSPATIAL, pages 202-211. ACM, 2010.

Harmen J Bussemaker et al. Regulatory element detection using a probabilistic segmen-
tation model. In Proceedings of the International Conference on Intelligent Systems for
Molecular Biology, pages 6774, 2000.

Huiping Cao, Nikos Mamoulis, and David W. Cheung. Discovery of collocation episodes
in spatiotemporal data. In Proceedings of the 6th IEEE International Conference on Data
Mining, ICDM, pages 823-827, 2006.

G. Castignani, T. Derrmann, R. Frank, and T. Engel. Driver behavior profiling using
smartphones: A low-cost platform for driver monitoring. IEEFE Intell. Transp. Syst. Mag.,
7(1), 2015.

138

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

27]

28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

Michelangelo Ceci, Annalisa Appice, and Donato Malerba. Time-slice density estimation for
semantic-based tourist destination suggestion. In ECAI 2010 - 19th European Conference
on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, pages 1107—
1108, 2010.

Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. Discovering popular routes from tra-
jectories. In Proceedings of the 27th International Conference on Data Engineering, ICDE,
pages 900-911, 2011.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder—decoder for statistical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724-1734,
Doha, Qatar, October 2014. Association for Computational Linguistics.

Kristina Chodorow. MongoDB: The Definitive Guide. O’Reilly Media, Inc., 2013.

Seongjin Choi, Jiwon Kim, and Hwasoo Yeo. Attention-based recurrent neural network
for urban vehicle trajectory prediction. Procedia Computer Science, 151:327 — 334, 2019.
The 10th International Conference on Ambient Systems, Networks and Technologies (ANT
2019) / The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019)
/ Affiliated Workshops.

Christophe Claramunt, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadzagic,
Gennady L. Andrienko, Natalia V. Andrienko, Yannis Theodoridis, George A. Vouros,
and Loic Salmon. Maritime data integration and analysis: recent progress and research
challenges. In Proceedings of the 20th International Conference on FExtending Database
Technology, EDBT, pages 192-197, 2017.

Mark S Daskin. Network and discrete location: models, algorithms, and applications. John
Wiley & Sons, 2 edition, 2013.

Ze Deng, Yangyang Hu, Mao Zhu, Xiaohui Huang, and Bo Du. A scalable and fast OPTICS
for clustering trajectory big data. Cluster Computing, 18(2):549-562, 2015.

Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, and Hujun Bao. Ultraman: A unified
platform for big trajectory data management and analytics. PVLDB, 11(7):787-799, 2018.

Christos Doulkeridis, Akrivi Vlachou, Dimitris Mpestas, and Nikos Mamoulis. Parallel and
distributed processing of spatial preference queries using keywords. In Proceedings of the
20th International Conference on Extending Database Technology, EDBT, pages 318-329,
2017.

Ahmed Eldawy and Mohamed F. Mokbel. The era of big spatial data: A survey. Founda-
tions and Trends in Databases, 6(3-4):163-273, 2016.

139

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

138

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

A Ellison, S Greaves, and M Bliemer. Driver behaviour profiles for road safety analysis.
Accident Analysis and Prevention, 76:118-132, 2015.

J. Engelbrecht, M. Booysen, J. van Rooyen, and F. Bruwer. Survey of smartphone-based
sensing in vehicles for intelligent transportation system applications. IET Intell. Transp.
Syst., 9(10), 2015.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.

Mohammad Etemad et al. A trajectory segmentation algorithm based on interpolation-
based change detection strategies. In EDBT/ICDT Workshops, 2019.

Liu F., Janssens D., and Wets G. Identifying business activity-travel patterns based on
GPS data. Paper being drafted, 2020.

Qi Fan, Dongxiang Zhang, Huayu Wu, and Kian-Lee Tan. A general and parallel platform
for mining co-movement patterns over large-scale trajectories. PVLDB, 10(4):313-324,
2016.

X. Fan, L. Guo, N. Han, Y. Wang, J. Shi, and Y. Yuan. A deep learning approach for next
location prediction. In 2018 IEEE 22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)), pages 69-74, May 2018.

Yixiang Fang, Reynold Cheng, Wenbin Tang, Silviu Maniu, and Xuan S. Yang. Scal-
able algorithms for nearest-neighbor joins on big trajectory data. IEEE Transactions on
Knowledge and Data Engineering TKDE, 28(3):785-800, 2016.

F. Feng, S. Bao, J.R. Sayer, C. Flannagan, M. Manser, and R. Wunderlich. Can vehicle
longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic
driving data. Accid. Anal. Prev., 104, 2017.

Marta Fort, Joan Antoni Sellarés, and Nacho Valladares. A parallel gpu-based approach
for reporting flock patterns. IJGIS, 28(9):1877-1903, 2014.

Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. Index-based most similar trajec-
tory search. In ICDE, pages 816-825, 2007.

F Fritsch and R Carlson. Monotone piecewise cubic interpolation. SIAM Journal on
Numerical Analysis, 17:238-246, 1980.

Cheng Fu, Haosheng Huang, and Robert Weibel. Adaptive Simplification of GPS Trajecto-
ries with Geographic Context. International Journal of Geographical Information Science,

2020 in press.

140

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Cheng Fu and Robert Weibel. Cross-scale Spatial Enrichment of Trajectories for Speed-
ing Up Similarity Computing A Theory of Cross-scale Analysis. In Georg Gartner and
Haosheng Huang, editors, LBS 2019 : Adjunct Proceedings of the 15th International Con-

ference on Location-Based Services, pages 135—140, Vienna, Austria, 2019.

H Georgiou, P Petrou, Pelekis N, and Y Theodoridis. Unsupervised driver behaviour
profiling using sparse gps data for online trajectory analytics. In (submitted), 2020.

Harris Georgiou, Sophia Karagiorgou, Yannis Kontoulis, Nikos Pelekis, Petros Petrou,
David Scarlatti, and Yannis Theodoridis. Moving Objects Analytics: Survey on Future
Location & Trajectory Prediction Methods. arXiv e-prints, page arXiv:1807.04639,
Jul 2018.

Harris Georgiou, Nikos Pelekis, Stylianos Sideridis, David Scarlatti, and Yannis Theodor-
idis. Semantic-aware aircraft trajectory prediction using flight plans. International Journal
of Data Science and Analytics, pages 1-14, March 2019.

Felix A. Gers, Jiirgen A. Schmidhuber, and Fred A. Cummins. Learning to forget: Con-
tinual prediction with Istm. Neural Comput., 12(10):2451-2471, October 2000.

Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern
mining. In Proceedings of the 13th ACM International Conference on Knowledge Discovery
and Data Mining, SIGKDD, pages 330-339, 2007.

Gyo6z6 Gidofalvi and Fang Dong. When and where next: individual mobility prediction. In
ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems,
MobiGIS 2012, pages 57-64, 2012.

C. Goh, J. Dauwels, N. Mitrovic, M. Asif, A. Oran, and P. Jaillet. Online map-matching
based on hidden markov model for real-time traffic sensing applications. In 15th IEEFE Intl.
Conf. Intell. Transp. Sys. (ICITS), 2012.

AJ Goldman. Optimal center location in simple networks. Transportation science, 5(2):212—
221, 1971.

Joao Bartolo Gomes, Clifton Phua, and Shonali Krishnaswamy. Where will you go? mobile
data mining for next place prediction. In Data Warehousing and Knowledge Discovery -
15th International Conference, DaWaK 2013, Prague, Czech Republic, August 26-29, 2013.
Proceedings, pages 146158, 2013.

J. Goncalves, J.S. Goncalves, R. Rossetti, and C. Olaverri-Monreal. Smartphone sensor
platform to study traffic conditions and assess driving performance. In Proc. 17th Int.
IEEE Conf. Intelligent Transportation Systems (ITSC), 2014.

141

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[62] Joachim Gudmundsson, Marc J. van Kreveld, and Frank Staals. Algorithms for hotspot
computation on trajectory data. In Proceedings of the 21st International Conference on
Advances in Geographic Information Systems, SIGSPATIAL, pages 134-143, 2013.

[63] Riccardo Guidotti et al. Never drive alone: Boosting carpooling with network analysis. IS,
64:237-257, 2017.

[64] Riccardo Guidotti et al. There’s a path for everyone: A data-driven personal model repro-
ducing mobility agendas. In DSAA, pages 303-312. IEEE, 2017.

[65] Riccardo Guidotti and Mothers. Retrieving points of interest from human systematic
movements. In SEFM, pages 294-308. Springer, 2014.

[66] Riccardo Guidotti, Roberto Trasarti, and Mirco Nanni. Tosca: two-steps clustering algo-
rithm for personal locations detection. In SIGSPATIAL, page 38. ACM, 2015.

[67] F. Guo, S. Klauer, J. Hankey, and T. Dingus. Near crashes as crash surrogate for natural-
istic driving studies. Transp. Res. Rec., 2147, 2010.

[68] Sini Guo et al. Gps trajectory data segmentation based on probabilistic logic. International
Journal of Approximate Reasoning, 103:227-247, 2018.

[69] Stefan Hagedorn and Timo Réth. Efficient spatio-temporal event processing with STARK.
In Proceedings of the 20th International Conference on Extending Database Technology,
EDBT, pages 570-573, 2017.

[70] S. Haykin. Adaptive Filter Theory (3rd/Ed.). Prentice-Hall, 1996.

[71] I. Hazan and A. Shabtai. Improving grid-based location prediction algorithms by speed
and direction based boosting. IEEE Access, 7:21211-21219, 2019.

[72] B. Higgs and M. Abbas. Segmentation and clustering of car-following behavior: Recognition
of driving patterns. IEEE Trans. Intell. Transp. Syst., 16(1), 2015.

[73] Johan Himberg et al. Time series segmentation for context recognition in mobile devices.
In ICDM, pages 203—-210. IEEE, 2001.

[74] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

[75] J. Hong, B. Margines, and A. Dey. A smartphone-based sensing platform to model aggres-
sive driving behaviors. In Proc. 32nd Annu. ACM Conf. Human Factors in Computing
Systems (CHI), 2014.

[76] Liang Hong, Yu Zheng, Duncan Yung, Jingbo Shang, and Lei Zou. Detecting urban black
holes based on human mobility data. In Proceedings of the 23rd International Conference
on Advances in Geographic Information Systems SIGSPATIAL, pages 35:1-35:10, 2015.

142

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

7]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[83]

[89]

L. Hou, L. Xin, S. E. Li, B. Cheng, and W. Wang. Interactive trajectory prediction
of surrounding road users for autonomous driving using structural-lstm network. IEEFE

Transactions on Intelligent Transportation Systems, pages 1-11, 2019.

Chunchun Hu, Xionghua Kang, Nianxue Luo, and Qiansheng Zhao. Parallel clustering of
big data of spatio-temporal trajectory. In ICNC, pages 769-774, 2015.

Chih-Chieh Hung, Wen-Chih Peng, and Wang-Chien Lee. Clustering and aggregating clues
of trajectories for mining trajectory patterns and routes. VLDB J., 24(2):169-192, 2015.

Claveria J.B., Hernandez S., Anderson J.C., and Jessup E.L. Understanding truck driver
behavior with respect to cell phone use and vehicle operation. Transportation Research
Part F, 65:389-401, 2019.

Hoyoung Jeung, Qing Liu, Heng Tao Shen, and Xiaofang Zhou. A hybrid prediction model
for moving objects. In ICDE, pages 70-79. IEEE, 2008.

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, and Christian S. Jensen. Path prediction
and predictive range querying in road network databases. VLDB J., 19(4):585-602, 2010.

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen.
Discovery of convoys in trajectory databases. PVLDB, 1(1):1068-1080, 2008.

Yantao Jia, Yuanzhuo Wang, Xiaolong Jin, and Xueqi Cheng. Location prediction: A
temporal-spatial bayesian model. ACM TIST, 7(3):31:1-31:25, 2016.

Peiquan Jin, Jiang Du, Chuanglin Huang, Shouhong Wan, and Lihua Yue. Detecting
hotspots from trajectory data in indoor spaces. In Proceedings of the 20th International
Conference on Database Systems for Advanced Applications, DASFAA, Part I, pages 209—
225, 2015.

Amilcar Soares Junior et al. Grasp-uts: an algorithm for unsupervised trajectory segmen-

tation. International Journal of Geographical Information Science, 29(1):46-68, 2015.

Amilcar Soares Junior et al. A semi-supervised approach for the semantic segmentation of
trajectories. In 19th IEEE International Conference on Mobile Data Management (MDM),
pages 145154, 2018.

Mahajan K., Nagendra R.V., Kumar A., Choudhary A., and Choudhary P. Effects of driver
work-rest patterns, lifestyle and payment incentives on long-haul truck driver sleepiness.
Transportation Research Part F, 60:366-382, 2019.

D Kahaner, C Moler, and S Nash. Numerical Methods and Software. Prentice Hall, Upper
Saddle River, NJ, USA, 1988.

143

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. In SSTD, pages 364-381, 2005.

B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi. Probabilistic
vehicle trajectory prediction over occupancy grid map via recurrent neural network. In
2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
pages 399-404, Oct 2017.

Henrik Klessig, Vinay Suryaprakash, Oliver Blume, Albrecht J. Fehske, and Gerhard Fet-
tweis. A framework enabling spatial analysis of mobile traffic hot spots. IEEE Wireless
Commun. Letters, 3(5):537-540, 2014.

N. Koutroumanis, G. Santipantakis, A. Glenis, C. Doulkeridis, and G. Vouros. Integration
of mobility data with weather information. In Proc. EDBT/ICDT 2019 Joint Conference
(EDBT/ICDT), 2019.

Dheeraj Kumar, Huayu Wu, Sutharshan Rajasegarar, Christopher Leckie, Shonali Krish-
naswamy, and Marimuthu Palaniswami. Fast and scalable big data trajectory cluster-
ing for understanding urban mobility. IEEE Trans. Intelligent Transportation Systems,
19(11):3709-3722, 2018.

Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering relative motion patterns
in groups of moving point objects. IJGIS, 19(6):639-668, 2005.

Victor Lavrenko et al. Mining of concurrent text and time series. In KDD Workshop on
Text Mining, volume 2000, pages 37-44, 2000.

Jae-Gil Lee et al. Trajectory clustering: A partition-and-group framework. In ACM SIG-
MOD, page 593-604. ACM, 2007.

Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, pages 593-604, 2007.

Stéphanie Lefévre, Dizan Vasquez, and Christian Laugier. A survey on motion prediction

and risk assessment for intelligent vehicles. Robomech Journal, 1, 07 2014.

Po-Ruey Lei, Tsu-Jou Shen, Wen-Chih Peng, and Ing-Jiunn Su. Exploring spatial-temporal
trajectory model for location prediction. In 12th IEEFE International Conference on Mobile
Data Management, MDM 2011, Luled, Sweden, June 6-9, 2011, Volume 1, pages 5867,
2011.

Luis Leiva and Enrique Vidal. Warped k-means: An algorithm to cluster sequentially-
distributed data. Information Sciences, 237:196-210, 07 2013.

144

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Wentian Li. Dna segmentation as a model selection process. In Proceedings of the Fifth
Annual International Conference on Computational Biology, RECOMB ’01, page 204-210.
ACM, 2001.

Yuxuan Li, James Bailey, and Lars Kulik. Efficient mining of platoon patterns in trajectory
databases. Data Knowl. Eng., 100:167-187, 2015.

Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. Swarm: Mining relaxed temporal
moving object clusters. PVLDB, 3(1):723-734, 2010.

N. Lin, C. Zong, M. Tomizuka, P. Song, Z. Zhang, and G. Li. An overview on study of
identification of driver behavior characteristics for automotive control. Math. Probl. Eng.,
2014, 2014.

T. Lofstedt, P. Brynolfsson, T. Asklund, T. Nyholm, and A. Garpebring. Gray-level in-
variant haralick texture features. PLoS ONE, 14(2), 2019.

Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang. Map-
matching for low-sampling-rate gps trajectories. In Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, GIS *09,
page 352-361, New York, NY, USA, 2009. Association for Computing Machinery.

Eric Hsueh-Chan Lu, Vincent S. Tseng, and Philip S. Yu. Mining cluster-based temporal
mobile sequential patterns in location-based service environments. IEEE Trans. Knowl.
Data Eng., 23(6):914-927, 2011.

Jonas Lukasczyk, Ross Maciejewski, Christoph Garth, and Hans Hagen. Understanding
hotspots: A topological visual analytics approach. In Proceedings of the 23rd International
Conference on Advances in Geographic Information Systems SIGSPATIAL, pages 36:1—
36:10, 2015.

Y Ma and et.al. A comparative study of aggressive driving behavior recognition algorithms
based on vehicle motion data. IEEE Access, 7:8028-8038, 2018.

Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha.
Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In AAAIL 2018.

Zhiming Ma, Mengfei Yao, Tao Hong, and Bo Li. Aircraft surface trajectory prediction
method based on LSTM with attenuated memory window. Journal of Physics: Conference
Series, 1215:012003, may 2019.

Gabor Makrai. Efficient method for large-scale spatio-temporal hotspot analysis. In Pro-
ceedings of the 24th ACM International Conference on Advances in Geographic Information
Systems, SIGSPATIAL, 2016.

145

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Fahad Magbool, Saad Razzaq, Jens Lehmann, and Hajira Jabeen. Scalable distributed
genetic algorithm using apache spark (s-ga). In International Conference on Intelligent

Computing, pages 424-435. Springer, 2019.

G. Meiring and H. Myburgh. A review of intelligent driving style analysis systems and
related artificial intelligence algorithms. Sensors, 15(12), 2015.

Nenad Mladenovi¢, Jack Brimberg, Pierre Hansen, and José A Moreno-Pérez. The p-
median problem: A survey of metaheuristic approaches. FEuropean Journal of Operational
Research, 179(3):927-939, 2007.

Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. Wherenext: a
location predictor on trajectory pattern mining. In ACM SIGKDD, pages 637646, 2009.

P.A. Moran. Notes on continuous stochastic phenomena. Biometrika, 37(1):17-23, 1950.

Brendan Morris and Mohan M. Trivedi. Learning trajectory patterns by clustering: Ex-
perimental studies and comparative evaluation. In IEEE CVPR, pages 312-319, 2009.

Mikolaj Morzy. Mining frequent trajectories of moving objects for location prediction. In
Machine Learning and Data Mining in Pattern Recognition, 5th International Conference,
MLDM 2007, Leipzig, Germany, July 18-20, 2007, Proceedings, pages 667-680, 2007.

Roger Moussalli, Ildar Absalyamov, Marcos R. Vieira, Walid A. Najjar, and Vassilis J. Tso-
tras. High performance FPGA and GPU complex pattern matching over spatio-temporal
streams. GeolInformatica, 19(2):405-434, 2015.

Attila M. Nagy and Vilmos Simon. Survey on traffic prediction in smart cities. Pervasive
and Mobile Computing, 50:148 — 163, 2018.

Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst., 27(3):267-289, 2006.

Pascal Neis and Alexander Zipf. Openrouteservice. org is three times “open” Combining
opensource, openls and openstreetmaps. GIS Research UK (GISRUK 08). Manchester,
2008.

Panagiotis Nikitopoulos, Aris-Iakovos Paraskevopoulos, Christos Doulkeridis, Nikos
Pelekis, and Yannis Theodoridis. BigCAB: Distributed hot spot analysis over big spatio-
temporal data using Apache Spark. In Proceedings of the 24th ACM International Confer-
ence on Advances in Geographic Information Systems, SIGSPATIAL, 2016.

Panagiotis Nikitopoulos, Aris-lakovos Paraskevopoulos, Christos Doulkeridis, Nikos
Pelekis, and Yannis Theodoridis. Hot spot analysis over big trajectory data. In Naoki
Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald

146

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz, editors,
IEEFE International Conference on Big Data, Big Data 2018, Seattle, WA, USA, December
10-13, 2018, pages 761-770. IEEE, 2018.

Masaaki Nishino, Yukihiro Nakamura, Takashi Yagi, Shin-yo Muto, and Masanobu Abe.
A location predictor based on dependencies between multiple lifelog data. In Proceed-
ings of the 2010 International Workshop on Location Based Social Networks, LBSN 2010,
November 2, 2010, San Jose, CA, USA, Proceedings, pages 11-17, 2010.

E. Ohn-Bar and M. Trivedi. Looking at humans in the age of self-driving and highly
automated vehicles. IEEE Trans. Intell. Veh., 1(1), 2016.

Faisal Orakzai, Toon Calders, and Torben Bach Pedersen. Distributed convoy pattern
mining. In IEEE MDM, pages 122-131, 2016.

Faisal Orakzai, Toon Calders, and Torben Bach Pedersen. k/2-hop: Fast mining of convoy
patterns with effective pruning. PVLDB, 12(9):948-960, 2019.

J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics: Distributional issues
and an application. Geographical Analysis, 27(4):286-306, October 1995.

J. Paefgen, F. Kehr, Y. Zhai, and F. Michahelles. Driving behavior analysis with smart-
phones: Insights from a controlled field study. In Proc. 11th Int. Conf. Mobile and Ubig-
uitous Multimedia (MUM), 2012.

Costas Panagiotakis, Eleni Kokinou, and Filippos Vallianatos. Automatic p-phase pick-
ing based on local-maxima distribution. IEEE Trans. Geoscience and Remote Sensing,
46(8):2280-2287, 2008.

Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ramasso, and Yannis
Theodoridis. Segmentation and sampling of moving object trajectories based on representa-
tiveness. IEEE Transactions on Knowledge and Data Engineering TKDE, 24(7):1328-1343,
2012.

Costas Panagiotakis and Georgios Tziritas. A speech/music discriminator based on RMS
and zero-crossings. IEEE Trans. Multimedia, 7(1):155-166, 2005.

Luca Pappalardo et al. Returners and explorers dichotomy in human mobility. Nature

communications, 6:8166, 2015.

S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi. Sequence-to-sequence
prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018 IEEE In-
telligent Vehicles Symposium (IV), pages 1672-1678, June 2018.

147

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

(148

SeongHyeon Park, Byeongdo Kim, Chang Mook Kang, Chung Choo Chung, and Jun Won
Choi. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder
architecture. In 2018 IEEE Intelligent Vehicles Symposium, 1V 2018, Changshu, Suzhou,
China, June 26-30, 2018, pages 16721678, 2018.

Adam Pavhicek et al. A compact view of isochores in the draft human genome sequence.
FEBS letters, 511(1-3):165-169, 2002.

Philip Pecher, Michael Hunter, and Richard Fujimoto. Data-driven vehicle trajectory
prediction. In Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’16, pages 13-22, New York, NY, USA, 2016. ACM.

Nikos Pelekis, Ioannis Kopanakis, Evangelos E. Kotsifakos, Elias Frentzos, and Yannis
Theodoridis. Clustering uncertain trajectories. Knowl. Inf. Syst., 28(1):117-147, 2011.

Nikos Pelekis, Ioannis Kopanakis, Costas Panagiotakis, and Yannis Theodoridis. Unsuper-
vised trajectory sampling. In Proceedings of the Furopean Conference on Machine Learning
and Knowledge Discovery in Databases, ECML PKDD, Part III, pages 17-33, 2010.

Nikos Pelekis, Panagiotis Tampakis, Marios Vodas, Christos Doulkeridis, and Yannis
Theodoridis. On temporal-constrained sub-trajectory cluster analysis. Data Min. Knowl.
Discov., 31(5):1294-1330, 2017.

Nikos Pelekis, Panagiotis Tampakis, Marios Vodas, Costas Panagiotakis, and Yannis
Theodoridis. In-dbms sampling-based sub-trajectory clustering. In EDBT, pages 632-643,
2017.

Dan Pelleg and Andrew Moore. X-means: Extending k-means with efficient estimation of

the number of clusters. Machine Learning, p, 01 2002.

Petros Petrou, Panagiotis Nikitopoulos, Panagiotis Tampakis, Apostolos Glenis, Nikolaos
Koutroumanis, Georgios M. Santipantakis, Kostas Patroumpas, Akrivi Vlachou, Harris V.
Georgiou, Eva Chondrodima, Christos Doulkeridis, Nikos Pelekis, Gennady L. Andrienko,
Fabian Patterson, Georg Fuchs, Yannis Theodoridis, and George A. Vouros. ARGO: A big
data framework for online trajectory prediction. In Proceedings of the 16th International
Symposium on Spatial and Temporal Databases, SSTD 2019, Vienna, Austria, August 19-
21, 2019, pages 194-197, 2019.

Petros Petrou, Panagiotis Tampakis, Harris V. Georgiou, Nikos Pelekis, and Yannis
Theodoridis. Online long-term trajectory prediction based on mined route patterns. In
MASTER@QECML-PKDD 2019, pages 34—49, 2019.

B. Porat. Digital processing of random signals: Theory and methods. Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1994.

148

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

J. Przybyla, J. Taylor, J. Jupe, and X. Zhou. Estimating risk effects of driving distraction:
A dynamic errorable car-following model. Transp. Res. C, 50, 2015.

H. Qin, Y. Peng, and W. Zhang. Vehicles on rfid: Error-cognitive vehicle localization
in gps-less environments. IEEE Transactions on Vehicular Technology, 66(11):9943-9957,
Nov 2017.

Disheng Qiu, Paolo Papotti, and Lorenzo Blanco. Future locations prediction with un-
certain data. In Machine Learning and Knowledge Discovery in Databases - Furopean
Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Pro-
ceedings, Part I, pages 417-432, 2013.

M Reza Rahimi, Nalini Venkatasubramanian, and Athanasios V Vasilakos. Music:
Mobility-aware optimal service allocation in mobile cloud computing. In 2013 IEEE sixzth

international conference on cloud computing, pages 75-82. IEEE, 2013.

Vasily E Ramensky et al. Dna segmentation through the bayesian approach. Journal of
Computational Biology, 7(1-2):215-231, 2000.

Charles S ReVelle and Ralph W Swain. Central facilities location. Geographical analysis,
2(1):30-42, 1970.

Salvatore Rinzivillo et al. The purpose of motion: Learning activities from individual
mobility networks. In DSAA, pages 312-318. IEEE, 2014.

W. Rongben, G. Lie, T. Bingliang, and J. Lisheng. Monitoring mouth movement for driver
fatigue or distraction with one camera. In Proc. 7th International IEEE Conference on
Intelligent Transportation Systems (ITSC), 2004.

A. Rossi, G. Barlacchi, M. Bianchini, and B. Lepri. Modelling taxi drivers’ behaviour for
the next destination prediction. IFEFE Transactions on Intelligent Transportation Systems,
pages 1-10, 2019.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533-536, 1986.

Dimitris Sacharidis, Kostas Patroumpas, Manolis Terrovitis, Verena Kantere, Michalis
Potamias, Kyriakos Mouratidis, and Timos K. Sellis. On-line discovery of hot motion
paths. In Proceedings of the 11th International Conference on Extending Database Tech-
nology, EDBT, pages 392—403, 2008.

F. Sagberg, G.F. Bianchi, and J. Engstrom. A review of research on driving styles and
road safety. Hum. Factors, 57(7), 2015.

149

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew T. Campbell.
Nextplace: A spatio-temporal prediction framework for pervasive systems. In Pervasive
Computing - 9th International Conference, Pervasive 2011, San Francisco, CA, USA, June
12-15, 2011. Proceedings, pages 152—-169, 2011.

Kazuhiro Seki, Ryota Jinno, and Kuniaki Uehara. Parallel distributed trajectory pattern
mining using hierarchical grid with mapreduce. IJGHPC, 5(4):79-96, 2013.

R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method. The
Computer Journal, 16(1):30-34, 01 1973.

Katarzyna Sita-Nowicka et al. Analysis of human mobility patterns from gps trajectories
and contextual information. IJGIS, 30(5):881-906, 2016.

M.R. Spiegel, J. Liu, and S. Lipschutz. Mathematical Handbook of Formulas and Tables
(4th/Ed.). McGraw-Hill, 2012.

M.R. Spiegel, J. Schiller, and R.A. Srinivasan. Probability and Statistics (3rd/Ed.).
McGraw-Hill, 2009.

Z. Sun and X.J. Ban. Vehicle classification using gps data. Transp. Res. C, 37, 2013.

P. Tampakis, N. Pelekis, C. Doulkeridis, and Y. Theodoridis. Scalable distributed subtra-
jectory clustering. In 2019 IEEFE International Conference on Big Data (Big Data), pages
950-959, 2019.

Panagiotis Tampakis, Christos Doulkeridis, Nikos Pelekis, and Yannis Theodoridis. Dis-
tributed subtrajectory join on massive datasets. ACM Trans. Spatial Algorithms Syst.,
6(2), 2020.

Panagiotis Tampakis, Christos Doulkeridis, Nikos Pelekis, and Yannis Theodoridis. Dis-
tributed subtrajectory join on massive datasets. ACM Trans. Spatial Algorithms and Sys-

tems, To appear.

Panagiotis Tampakis, Nikos Pelekis, Natalia V. Andrienko, Gennady L. Andrienko,
Georg Fuchs, and Yannis Theodoridis. Time-aware sub-trajectory clustering in her-
mes@postgresql. In ICDE, pages 1581-1584, 2018.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pear-
son Education India, 2018.

Lu An Tang, Yu Zheng, Jing Yuan, Jiawei Han, Alice Leung, Chih-Chieh Hung, and Wen-
Chih Peng. On discovery of traveling companions from streaming trajectories. In ICDE,
pages 186-197, 2012.

150

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

MinglJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and Walid G. Aref.
Locationspark: A distributed in-memory data management system for big spatial data.
PVLDB, 9(13):1565-1568, 2016.

X. Tang. Texture information in run-length matrices. IEEE Trans. Im. Proc., 7(11), 1998.

Fernando Terroso-Saenz, Mercedes Valdes-Vela, and Antonio F Skarmeta-Gomez. Online
route prediction based on clustering of meaningful velocity-change areas. Data mining and
knowledge discovery, 30(6):1480-1519, 2016.

Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence segmentation.
In SDM, pages 316-327. STAM, 2006.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 4th edition,
2008.

Roberto Trasarti et al. Mining mobility user profiles for car pooling. In KDD, pages
1190-1198. ACM, 2011.

Roberto Trasarti et al. Myway: Location prediction via mobility profiling. IS, 64:350-367,
2017.

Roberto Trasarti, Riccardo Guidotti, Anna Monreale, and Fosca Giannotti. Myway: Lo-
cation prediction via mobility profiling. Inf. Syst., 64:350-367, 2017.

Md Reaz Uddin, Chinya Ravishankar, and Vassilis J Tsotras. Finding regions of interest
from trajectory data. In Proceedings of the 12th International Conference on Mobile Data
Management MDM, volume 1, pages 39-48, 2011.

Angelos Valsamis, Konstantinos Tserpes, Dimitrios Zissis, Dimosthenis Anagnostopoulos,
and Theodora A. Varvarigou. Employing traditional machine learning algorithms for big
data streams analysis: The case of object trajectory prediction. J. Syst. Softw., 127:249—
257, 2017.

Juan Van Roy, Niels Leemput, Sven De Breucker, Frederik Geth, Peter Tant, and Johan
Driesen. An availability analysis and energy consumption model for a flemish fleet of
electric vehicles. In EEVC Furopean Electric Vehicle Congress, 2011.

Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. On-line discovery of flock patterns
in spatio-temporal data. In ACM SIGSPATIAL, pages 286—295, 2009.

Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering similar multidi-
mensional trajectories. In ICDE, pages 673—-684, 2002.

C. Wang, L. Ma, R. Li, T. S. Durrani, and H. Zhang. Exploring trajectory prediction
through machine learning methods. IEEE Access, 7:101441-101452, 2019.

151

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

188

[189)

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

W. Wang, J. Xi, A. Chong, and L. Li. Driving style classification using a semisupervised
support vector machine. IEEE Trans. Human—Mach. Syst., 47(5), 2017.

W. Wang, J. Xi, and D. Zhao. Driving style analysis using primitive driving patterns with
bayesian nonparametric approaches. IEEE Trans. on Intell. Trans. Sys., 20(8), 2019.

Y. Wang, D. Zhang, Y. Liu, and K. Tan. Trajectory forecasting with neural networks: An
empirical evaluation and a new hybrid model. IEEE Transactions on Intelligent Trans-

portation Systems, pages 1-10, 2019.

Josh Warren, Jeff Lipkowitz, and Vadim Sokolov. Clusters of driving behaviour from
observational smartphone data. IEEE Intell. Trans. Sys. Mag., 11(3), 2019.

Randall T. Whitman, Michael B. Park, Bryan G. Marsh, and Erik G. Hoel. Spatio-
temporal join on apache spark. In Proceedings of the 25th ACM International Conference
on Advances in Geographic Information Systems, SIGSPATIAL, pages 20:1-20:10, 2017.

Fan Wu, Kun Fu, Yang Wang, Zhibin Xiao, and Xingyu Fu. A spatial-temporal-semantic
neural network algorithm for location prediction on moving objects. Algorithms, 10:37, 03
2017.

Yongyi Xian, Yan Liu, and Chuanfei Xu. Parallel gathering discovery over big trajectory
data. In Proceedings of the 2016 IEEE International Conference on Big Data, BigData,
pages 783-792, 2016.

Dong Xie, Feifei Li, and Jeff M. Phillips. Distributed trajectory similarity search. PVLDB,
10(11):1478-1489, 2017.

Zhixian Yan et al. Semantic trajectories: Mobility data computation and annotation. ACM
TIST, 4(3):49, 2013.

Gokhan Yavas, Dimitrios Katsaros, Ozgiir Ulusoy, and Yannis Manolopoulos. A data min-
ing approach for location prediction in mobile environments. Data Knowl. Eng., 54(2):121-
146, 2005.

W. Zhan, A. L. de Fortelle, Y. Chen, C. Chan, and M. Tomizuka. Probabilistic prediction
from planning perspective: Problem formulation, representation simplification and evalu-
ation metric. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1150-1156, June
2018.

T. Zhang, R. Raghu, and L. Miron. Birch: An efficient data clustering method for very
large databases. In Proc. ACM SIGMOD Intl. Conf. on Management of Data. Canada
(SIGMOD), 1996.

152

{}Track&Know D4.1 Analytics for mobility patterns detection H2020-ICT-2017-1

[200] PX Zhao, K Qin, Q Zhou, CK Liu, and YX Chen. Detecting hotspots from taxi trajectory
data using spatial cluster analysis. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 2(4):131-135, 2015.

[201] Kai Zheng, Yu Zheng, Nicholas Jing Yuan, and Shuo Shang. On discovery of gathering
patterns from trajectories. In ICDE, pages 242-253, 2013.

[202] Yu Zheng. Trajectory data mining: An overview. ACM TIST, 6(3):29:1-29:41, 2015.

[203] Yu Zheng et al. Recommending friends and locations based on individual location history.
ACM Transactions on the Web, 5(1):5, 2011.

[204] Nikolaos Zorbas, Dimitrios Zissis, Konstantinos Tserpes, and Dimosthenis Anagnostopou-
los. Predicting object trajectories from high-speed streaming data. In 2015 IEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015, Volume 2, pages 229-234,
2015.

[205] Nikolaos Zygouras and Dimitrios Gunopulos. Discovering corridors from GPS trajectories.
In ACM SIGSPATIAL, pages 61:1-61:4, 2017.

[206] Nikolaos Zygouras and Dimitrios Gunopulos. Corridor learning using individual trajecto-
ries. In IEEE MDM, pages 155-160, 2018.

153

	Introduction
	Purpose and scope
	Approach for the Work package and relation to other Deliverables
	Approach & Methodology
	Relation to other deliverables

	Mapping Track and Know outputs
	Structure of the deliverable

	Relevance to the Track and Know platform
	Track and Know platform at a glance
	The Big Data Analytics (BDA) Toolbox

	Big Data Analytics (BDA) components
	Adaptive Extraction of Individual Locations of Interest
	Trajectory segmentation
	Related Work
	Problem definition
	Self-Adaptive Trajectory Segmentation
	Evaluation Measures for segmentation
	Experiments
	Adaptive location extraction with TOSCA
	Impact on location extraction
	Conclusion

	Analysis of electrificability of trips
	Input movement data
	Preprocessing and elevation enrichment
	Consumption estimation
	Model Implementation and output format
	Tests and case study
	Conclusion

	Distributed Sub-trajectory Clustering
	Introduction
	Related Work
	Problem Formulation
	Problem Solution
	Experimental Study

	Future Location Prediction (FLP) - Trajectory Prediction (TP)
	Part I: NN-based for short-term
	Part II: Pattern-based Future Location Prediction

	Driver behavior profiling
	Trajectory analytics for driver profiling
	Problem description
	Road matching and filtering
	Dynamic Temporal Resampling Buffer (DTRB)
	Feature extraction via trajectory analytics
	Feature selection for dimensionality reduction
	Unsupervised learning - Clustering
	Experiments and Results
	Discussion
	Enhancements & Future work

	Hot Spot Analysis
	Related Work
	Problem Formulation
	An Exact Algorithm: THS
	An Approximate Algorithm: aTHS
	Empirical Evaluation
	Summary and Future Work

	Identifying business activity-travel patterns based on GPS data
	Problem statement
	The proposed method
	Experimental results

	Semantic Enrichment of Trajectory for Cross-Scale Analysis
	A POI-Quadtree-based Variable-Resolution Enrichment Model for Trajectory Simplification
	The Application of Variable-resolution Enrichment Model for Cross-scale Visual Analytics on Dashboard

	Genetic p-Median Solver for Mobility driven Location-Allocation
	Description of Problem and Approach
	Methodology
	Implementation
	p-Median Application

	Conclusions
	Annex I: Ethics report

