
Big Data for Mobility Tracking Knowledge Extraction in Urban Areas

D3.3 Primitive Query Operators

Document Summary Information

Grant Agreement No 780754 Acronym TRACK & KNOW

Full title Big Data for Mobility Tracking Knowledge Extraction in Urban Areas

Start Date 01/01/2018 Duration 36 months

Project URL https://trackandknowproject.eu/

Deliverable D3.3 Primitive Query Operators

Work Package WP3 Big Data Processing Toolboxes Management (BDP Toolbox)

Contractual due date 30/06/2020 Actual submission date 30/06/2020

Nature Other Dissemination Level PU

Lead Beneficiary UPRC

Contributions From Evaggelia Chondrodima, Christos Doulkeridis, Harris V. Georgiou,
Nikolaos Koutroumanis, Panagiotis Nikitopoulos, Nikos Pelekis, Petros Petrou,
Panagiotis Tampakis, Yannis Theodoridis, Akrivi Vlachou (UPRC)

Responsible Author Christos Doulkeridis

https://trackandknowproject.eu/

HISTORY OF CHANGES

Version Date Changes Author

0.1 6/9/2020 First version of table
of contents C. Doulkeridis

0.3 20/5/2020 First version of Sec-
tion 2 N. Koutroumanis

0.3 27/5/2020 First version of Sec-
tion 3 N. Koutroumanis

0.4 3/6/2020 First version of Sec-
tion 5 P. Tampakis

0.5 5/6/2020 First version of Sec-
tion 4 and Section 1

N. Koutroumanis, C.
Doulkeridis

0.6 12/6/2020
Revisions of all Sec-
tions, version sent for
internal review

N. Koutroumanis, C.
Doulkeridis

0.7 21/6/2020
Revisions based on re-
viewer (Mirco Nanni,
CNR) comments

C. Doulkeridis

0.8 26/6/2020
Final minor correc-
tions in technical sec-
tions

N. Koutroumanis, C.
Doulkeridis

D3.3 Primitive Query Operators H2020-ICT-2017-1

EXECUTIVE SUMMARY

This report comprises the third and last deliverable (D3.3) of Track&Know work package 3
“Big Data Processing Toolboxes Management (BDP Toolbox)”, with main objective to report on
query operators for Big Data that have been implemented during the course of the project, with
particular emphasis on mobility data.

Deliverable D3.3 focuses on bridging the gap between application developers and scalable, big
data storage solutions, by addressing the heterogeneity of NoSQL stores that still offer ad-hoc,
idiosyncratic and non-standardized programming APIs, and stalls big data application develop-
ment significantly. Drawing parallels to the relational storage landscape, our work is an attempt
towards a standardized API (such as ODBC/JDBC) which provides uniform access to any rela-
tional database management system (RDBMS).

Essentially, the first part of this deliverable targets this limitation of modern NoSQL stores.
We introduce NoDA, a programming interface that serves as an access layer between the applica-
tion and the underlying NoSQL store. NoDA offers a set of basic data access operators (such as
filter, project, aggregation, sorting) that are implemented for different NoSQL stores, thus hiding
the heterogeneity of the underlying NoSQL stores. This uniform layer offers unique advantages
to the application developer, who is empowered to learn a single API (instead of multiple APIs)
and whose application code becomes portable to use another NoSQL store without modifications.
In brief, NoDA serves as a technology that removes barrier of entry for application developers
and NoSQL stores, improves their productivity, and speeds up application development. In addi-
tion, NoDA targets explicitly mobility data, by providing additional query operators for spatial
and spatio-temporal retrieval. Last, but not least, we couple the programming API provided by
NoDA with a declarative, SQL-like interface, which can be used by data scientists and business
analysts to test their code using a standardized query language which is ubiquitous even beyond
computer scientists.

The second part of this deliverable targets complex query operators that cannot be integrated
in NoDA, because they cannot be pushed-down to the underlying NoSQL store. A typical exam-
ple of such an operator is a join between different data sources. In the context of Track&Know,
we demonstrate the design and implementation of the distributed sub-trajectory join (DTJ),
a generic join operator that is applicable on mobility data and identifies maximal portions of
sub-trajectories that are close in space and time. This operator is generic in the sense that it can
be used as building block for mobility analytics, e.g., for clustering trajectories. We showcase a
scalable implementation of DTJ using MapReduce/Hadoop.

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1 Introduction 1
1.1 Purpose and Scope . 1
1.2 Approach for the Work package and Relation to other Deliverables 2
1.3 Mapping Track&Know Outputs . 3
1.4 Methodology and Structure of this Deliverable 3

2 Overview of Functionality 6
2.1 Primitive Query Operators . 6
2.2 Complex Query Operators . 7

3 Technical Description of NoDA 9
3.1 Design and Rationale of the NoDA API . 9
3.2 Technical Details . 18
3.3 Interfaces . 28

3.3.1 Programming interface . 28
3.3.2 SQL interface . 29
3.3.3 Related Module Technical Details . 31

3.4 Implementation for MongoDB . 35
3.4.1 Loading and Querying Spatio-temporal Data 35
3.4.2 Related Module Technical Details . 36

3.5 Implementation for HBase . 41
3.5.1 Loading and Querying spatial data . 41
3.5.2 Related Module Technical Details . 43

3.6 Implementation for Redis . 49
3.6.1 Loading and Querying spatio-temporal data 49
3.6.2 Related Module Technical Details . 50

4 Developer’s guide – Practical Examples of NoDA 55
4.1 Use of the Programming Interface . 57
4.2 Use of the SQL Interface . 61

5 Technical Description of Complex Query Operators 64
5.1 Distributed Sub-trajectory Join . 64
5.2 Problem Statement . 67

5.2.1 A Closer Look at the Sub-trajectory Join Problem 68
5.2.2 Properties of Sub-trajectory Join . 69

5.3 The Basic Sub-trajectory Join Algorithm . 71
5.3.1 Preliminaries . 71
5.3.2 The DTJb Algorithm . 71

5.4 Sub-trajectory Join with Repartitioning . 77

D3.3 Primitive Query Operators H2020-ICT-2017-1

5.4.1 Repartitioning . 78
5.4.2 The DTJr Algorithm . 79

5.5 Index-based Sub-trajectory Join with Repartitioning 80
5.5.1 Indexing Scheme . 80
5.5.2 The DTJi Algorithm . 81

5.6 Experimental Study . 83
5.6.1 Scalability . 84
5.6.2 Comparative Evaluation . 84

6 Conclusions 86

A Ethics Proforma 91

B NoDA 94
B.1 NoDA Maven Modules Info . 94

B.1.1 Project: noda-parent . 94
B.1.2 Module: noda-core . 94
B.1.3 Module: noda-client . 95
B.1.4 Module: noda-mongodb . 95
B.1.5 Module: noda-hbase . 96
B.1.6 Module: noda-redisearch . 96

D3.3 Primitive Query Operators H2020-ICT-2017-1

TERMS & ABBREVIATIONS

ANTLR Another Tool for Language Recognition
API Application Programming Interface
BPs Breaking Points
CPU Central Processing Unit
DTJ Distributed Sub-Trajectory Join
DTW Dynamic Time Warping
GPS Global Positioning System
HDD Hard Disk Drive
HDFS Hadoop Distributed File System
IAAS Infrastructure as a Service
IP Internet Protocol
JDBC Java Database Connectivity
kNN k Nearest Neighbours
MR MapReduce
NJP Non-Joining Points
NoDA NoSQL Data Access Operators
NoSQL Non SQL or Non Relational
ODBC Open Database Connectivity
POI Point-of-interest
RAM Random Access Memory
RDBMS Relational Database Management System
SQL Structured Query Language
TrI Trajectory Index

LIST OF FIGURES

1 Broad overview of primitive and complex query operators, showing their position-
ing with respect to big data developers and scalable NoSQL storage. NoDA is
presented in Sections 3, 4, while the distributed sub-trajectory join is presented
in Section 5. 6

2 Structure of the NoDA project . 18
3 UML class diagram of noda-core module, associated with the connectivity of

NoSQL System and the data access operators. 25
4 UML class diagram of noda-core module, associated with the data access operators

and their units. 26
5 UML class diagram of noda-core module, associated with the data access operators

and their facets for utilizing them . 27
6 Example of SQL expression and NoDA query primitives mapping, depicted with

colors . 30
7 UML class diagram of noda-client module . 34
8 UML class diagram of noda-mongdb module . 40
9 Geohashing space splitting . 42
10 UML class diagram of noda-hbase module . 48
11 UML class diagram of noda-redisearch module . 54
12 (a) A pair of maximally “matching” sub-trajectories and (b) a breaking point r1

and a non-joining point s5 w.r.t. r. 65
13 The DTJb algorithm in MapReduce. 71
14 Join phase - The TRJPlaneSweep algorithm. 74
15 Output of Join and input of Refine phase. 75
16 Refine procedure. 77
17 The DTJb algorithm in MapReduce: (a) Repartitioning step and (b) Query step. 78
18 Indexing Scheme of DTJi algorithm . 80
19 Scalability analysis varying (a) the size of the dataset and (b) the number of nodes 84
20 Comparative evaluation between DTJi and SJMR 85

LIST OF TABLES

1 Mapping Track&Know outputs . 4
2 Supported primitive operators in NoDA . 9
3 Supported comparison operators . 12
4 Supported boolean operators . 13
5 Supported geographical operators . 13
6 Supported geotemporal operators . 15
7 Supported aggregate operators . 16
8 Supported sort operators . 17
9 SQL spatio-temporal functions and the corresponding NoDA geoperators 31
10 SQL spatio-temporal functions arguments . 32

D3.3 Primitive Query Operators H2020-ICT-2017-1

1 Introduction

This document is the deliverable D3.3 “Primitive Query Operators” of Task T3.3 of work package
3 “Big Data Processing Toolboxes Management (BDP Toolbox)” of the Track&Know project,
which is submitted on month M30 of the project.

Its objective is to report on scalable query operators implemented over NoSQL stores, thus
completing the batch processing layer of the Track&Know architecture. To this end, the work
presented in this report can be separated in two major categories: (a) a unified layer for querying
NoSQL stores, termed NoDA [28], which hides the heterogeneity of the underlying NoSQL stores
from the big data developer, and provides a uniform way to query mobility data stored in different
NoSQL stores, and (b) complex query operators for mobility data that cannot be “pushed-down”
to the NoSQL store, thus they must be designed and implemented as parallel data processing
tasks; we focus on a generic operator, termed distributed sub-trajectory join (DTJ) [44], which
can be used as a building block for implementing scalable trajectory analysis tasks, such as sub-
trajectory clustering [45]. It should be highlighted that the distributed sub-trajectory join is
exploited in Track&Know by the Big Data Analytics (BDA) Toolbox, and in particular by the
distributed sub-trajectory clustering proposed therein (reported in Deliverable D4.1). This can
be perceived as an example of the interoperability between the different toolboxes proposed in
Track&Know.

The work presented in this deliverable has been partly already published in SSTD [28] and
ACM TSAS [44], in the context of the Track&Know project, by M30:

� Nikolaos Koutroumanis, Panagiotis Nikitopoulos, Akrivi Vlachou, Christos Doulkeridis: NoDA:
Unified NoSQL Data Access Operators for Mobility Data. SSTD 2019: 174-177.
� Panagiotis Tampakis, Christos Doulkeridis, Nikos Pelekis, Yannis Theodoridis: Distributed
Subtrajectory Join on Massive Datasets. ACM Trans. Spatial Algorithms and Systems 6(2):
8:1-8:29 (2020).

1.1 Purpose and Scope

In the context of the Track&Know project, large volumes of historical mobility data need to
be collected, pre-processed, enriched and stored (cf. Deliverable D3.1), in order to support ad-
hoc analytical queries that feed mobility analytics tasks and applications. Efficient and scalable
retrieval of this data is only part of the underlying challenge (cf. Deliverable D3.2).

Another major challenge is to provide tools to big data developers for easy data access and
manipulation, without shifting their focus from application development to data storage. In the

1

D3.3 Primitive Query Operators H2020-ICT-2017-1

current era of Big Data, this is intensified by the wide variety of scalable storage technologies,
typically NoSQL stores, each targeting different data models and query access patterns. To
tackle this challenge, our work offers an abstraction layer that is conceptually located between
the big data developer and the underlying NoSQL stores, hiding the data heterogeneity, the
different data models, and (perhaps most importantly) the different language that each NoSQL
store exposes to developers.

The proposed abstraction layer, called NoDA1, offers flexibility and ease of use to big data
developers by means of a programming API that is internally implemented for different NoSQL
stores, thus hiding their heterogeneity. The programming API makes application development
much easier, since developers need to learn a single API (instead of different APIs), while at the
same time it permits changing the choice of storage during application development, without
affecting the existing code base of the application. Moreover, the programming API is coupled
with an SQL-like interface that allows declarative querying of the underlying NoSQL stores. This
is the core offering of the work presented in this Deliverable. In addition, we showcase how to
develop more complex operators for mobility data (such as joins) that cannot be pushed-down
to the NoSQL store.

Deliverable D3.3 is submitted on month M30 of the project, reporting the results of the
primitive query operators for big data. Essentially, it reports on an abstraction layer for NoSQL
stores that comprises a fundamental part of the “Big Data Processing Toolbox (BDP)” that is
developed in the context of WP3.

1.2 Approach for the Work package and Relation to other Deliverables

Approach Work package 3 is responsible for big data management aspects in the context of
Track&Know; from data acquisition and integration to scalable storage and flexible querying.
Moreover, it is responsible for delivering the “Big Data Processing Toolbox” (BDP), a generic,
flexible and re-usable toolbox that facilitates data management and processing for big data
developers.

Relation to other deliverables The work described in this deliverable relates to previous
deliverables of the project, as follows:

• D1.2 “Corporate Big Data Requirements”: The specification of requirements regarding stor-
age and querying of Big Data for supporting the needs of advanced data analysis operations
has guided some design decisions made in this deliverable.

• D2.1 “Architectures for the management of structured & unstructured data streams”: The
solutions described in this deliverable are compliant with the overall architecture of Track&Know

1NoSQL Data Access Operators

2

D3.3 Primitive Query Operators H2020-ICT-2017-1

as specified in deliverable D2.1.

• D2.2 “Architectures for the Management of Batch and Interactive Data Sources”: Includes
the comparative overview of different NoSQL solutions and the selection of a document-
oriented store (MongoDB) to be the basis of the batch storage solution in Track&Know.
However, it should be noted that the work presented in D3.3 is not limited to one specific
NoSQL store.

• D3.1 “Data Acquisition and Integration Report”: This report essentially describes the pro-
cess that enriches mobility data by means of cleansing, map-matching, and associating
GPS traces with weather and points-of-interest (POIs). The resulting enriched mobility
data comprises the input data set for persistent and scalable storage.

• D3.2 “Big Data Storage and Indexing Report”: This report focuses on efficient storage and
indexing for spatio-temporal data in NoSQL stores, and its findings are exploited by the
primitive query operators presented here, in order to improve their performance.

• D4.1 “Analytics for Mobility Patterns Detection and Forecasting”: This deliverable reports
on various methods for mobility data analytics and forecasting, and some of its methods ex-
ploit the proposed operators in this deliverable. In particular, the distributed sub-trajectory
clustering proposed in D4.1 build upon the distributed sub-trajectory join presented in this
deliverable.

1.3 Mapping Track&Know Outputs

The purpose of this section is to map the Grant Agreement commitments, both within the formal
Deliverable and Task description, against the project’s respective outputs and work performed.
To this end, Table 1 provides a mapping of Track&Know outputs to specific sections of this
deliverable, in order to improve readability.

1.4 Methodology and Structure of this Deliverable

Methodology The work methodology of the activities within D3.3 can be summarized as
follows:

• Analysis of requirements for query operators over scalable NoSQL stores, leading to sepa-
ration between primitive operators (that can be pushed-down to the underlying store) and
complex operators (that cannot be pushed-down to the underlying store).

3

D3.3 Primitive Query Operators H2020-ICT-2017-1

Table 1: Mapping Track&Know outputs

TRACK&KNOW TRACK&KNOW Respective
JustificationGA Component GA Component Document

Title Outline Chapter(s)

Deliverable

D3.3 All
This deliverable describes the

Primitive Query Operators specification and prototype

implementation of the

primitive query operators

Tasks

Task 3.3 - Distributed [...] that will serve as a software

Sect. 2

complex query layer very close to the storage

toolbox layer allowing effective and

efficient interaction with the massive

datasets stored in Track&Know

[...] a set of primitive query

Sect. 3

NoDA provides basic

operators is going to be defined operators implemented

that operate over highly over scalable and distributed

distributed data [...] NoSQL stores

[...] different implementations of the
Sect. 3

NoDA is an abstraction layer

same operator can be provided for that is instantiated for

different storage solutions (e.g., different NoSQL stores

HBase, MongoDB, etc.) [...]

[...] easier and more flexible

Sect. 3, 5

NoDA is compatible with

software integration with the Spark, while complex

Big Data processing architecture operators, such as joins, are

and the various Toolboxes is implemented on top of NoSQL

going to be ensured [...]

[...] as developers are relieved from
Sect. 4

Showcased by practical

the cumbersome task of writing examples of use of the NoDA

optimized software for data API as well as a declarative

manipulation and data access SQL-like interface

• Specification of the operators that comprise the NoDA abstraction layer, which corresponds
to the primitive query operators (called NoDA).

• Design and implementation of NoDA for a document-oriented NoSQL store (MongoDB).

• Design and implementation of NoDA for a wide-column NoSQL store (HBase).

• Design and implementation of NoDA for a key-value NoSQL store (Redis).

4

D3.3 Primitive Query Operators H2020-ICT-2017-1

• Development of a declarative (SQL-like) interface for NoDA.

• Design and implementation of complex join operator for mobility data, called Distributed
Sub-trajectory Join (DTJ), as an example of a complex query operator that cannot be
pushed-down to the NoSQL store.

Structure of this deliverable The remainder of this deliverable is structured as follows:

• Section 2 presents a crisp overview of the functionality of NoDA, thus providing a brief
look on its capabilities and offerings.

• Section 3 provides the technical description of NoDA in more detail, in terms of its design
and implementation, as well as its instantiation over different NoSQL stores (MongoDB,
HBase, and Redis).

• Section 4 is the developer’s guide of NoDA, offering practical examples of its use, both in
terms of programming as well as in terms of using a declarative language.

• Section 5 presents the design and implementation of complex query operators for mobility
data, focusing mainly on distributed sub-trajectory join, a special case of a join operator
that cannot be “pushed-down” to the underlying NoSQL store.

• Section 6 presents the conclusions of this work.

5

D3.3 Primitive Query Operators H2020-ICT-2017-1

2 Overview of Functionality

This section provides a brief overview of our work on big data processing, described in this
deliverable. The provided big data processing operators are separated in two distinct categories:
(a) primitive query operators that are data access operators that can be pushed-down to the
underlying NoSQL store, and (b) complex query operators that cannot be pushed-down to the
store, and instead need to be implemented in an existing big data processing framework.

Figure 1: Broad overview of primitive and complex query operators, showing their position-
ing with respect to big data developers and scalable NoSQL storage. NoDA is presented in
Sections 3, 4, while the distributed sub-trajectory join is presented in Section 5.

This is graphically illustrated in Figure 1 and it is further described in the subsequent sub-
sections 2.1 and 2.2. Furthermore, it should be noted that the proposed techniques are tailored
to mobility data, which is the primary data type targeted in the Track&Know project. However,
we emphasize that the primitive query operators are not limited to mobility data, and can also
be used for filtering, projection, aggregation, sorting, etc., of other types of data.

2.1 Primitive Query Operators

During the last fifteen years, NoSQL stores have gained ground as scalable storage solutions,
as their characteristics meet the requirements of several data-intensive applications. Typically,

6

D3.3 Primitive Query Operators H2020-ICT-2017-1

such applications need to handle a huge amount of data and serve countless requests within
reasonable time. Also, the flexible data schema supported by NoSQL stores offers added value
to the application developer, since NoSQL stores are not restricted by the rigid nature of the
relational model.

However, existing NoSQL stores still have major limitations, such as the lack of standard-
ization in data access. Every NoSQL system provides its own query language through its native
libraries for handling data, whereas in the relational database world, data access is possible
by using a driver (e.g., JDBC for Java programming language) and SQL. This shortcoming,
also highlighted in [11], may incommode the transition to a NoSQL store, since the application
developers need to learn its specific query language.

Motivated by the evident lack of a unified query language, in this deliverable, we present
NoDA, an abstraction layer in the form of an API for querying NoSQL stores with native sup-
port for geospatial operations. The vision of NoDA comes to fill the existing gap between big
data developers and the query languages of the NoSQL engines. Being an abstract layer, it
offers common functionality over different NoSQL databases, as depicted in Figure 1. With the
functionality term, we refer to the provided operations for data manipulation. The underlying
rationale is based on the grouping of generic operations of the engines and their provision as data
access operators in a unified way. This is offered by a developer-friendly programming API that
can be used by big data applications. Alongside with this, NoDA supports a declarative, SQL-
like interface that is useful for data scientists and business analysts that can easily access and
manipulate data in NoSQL stores using a well-known language (SQL). This practice of providing
declarative SQL-like interfaces is common in several big data processing frameworks; notable
examples include Hadoop (with Hive [46] and Pig [24]), Spark (with Spark SQL [3]).

2.2 Complex Query Operators

Analysis of mobility data often requires complex data processing, such as associating data orig-
inating from different sources based on some condition (join) or even data from the same source
(self-join). For instance, this is typically the case for many clustering algorithms that rely on
the computation of pairwise distances between objects. Unfortunately, NoSQL stores are not de-
signed to efficiently support join operations natively. As a result, complex query operations over
big data are implemented using parallel data-processing frameworks (e.g., MapReduce/Hadoop,
Spark, Flink, etc.) in order to ensure scalability.

In Track&Know, we follow the same approach and advocate the implementation of complex
query operators on top of existing big data processing frameworks. To showcase this functionality,
we select an operation called sub-trajectory join, which aims at identifying maximal portions
of matching sub-trajectories, where “matching” refers to spatial and temporal proximity. We

7

D3.3 Primitive Query Operators H2020-ICT-2017-1

demonstrate how to efficiently design and implement the Distributed Sub-trajectory Join (DTJ)
in MapReduce, a generic operator that can be exploited by distributed sub-trajectory clustering
algorithms to deliver modern applications to the end-user, including carpooling/ride-sharing and
trip planning.

It should also be noted that the DTJ operator can work both independently from NoDA, for
example by reading data directly from HDFS, but it can also exploit NoDA in order to fetch
data from a NoSQL store (such as MongoDB, HBase, Redis).

8

D3.3 Primitive Query Operators H2020-ICT-2017-1

3 Technical Description of NoDA

This section presents the technical details of NoDA, focusing on its design, the structure of
its main software modules, the interfaces provided to application developers and business ana-
lysts, and finally its implementation over three NoSQL stores that belong to different categories:
a document-oriented store (MongoDB), a wide-column store (HBase), and a key-value stores
(REDIS).

Table 2: Supported primitive operators in NoDA

Primitives Arguments Phase

filter (FilterOperator fop, FilterOperator... fops) Definition

groupBy (String columnName, String... columnNames) Definition

aggregate (AggregateOperator aggrOpr, AggregateOperator... aggrOp) Definition

distinct (String columnName) Definition

max (String columnName) Execution

min (String columnName) Execution

sum (String columnName) Execution

avg (String columnName) Execution

count () Execution

sort (SortOperator sop, SortOperator... sops) Definition

limit (int limit) Definition

project (String columnName, String... columnNames) Definition

toDataframe () Execution

3.1 Design and Rationale of the NoDA API

The design of NoDA adopts the concept of offering generic query operators to application devel-
opers, so as to access data stored in NoSQL databases, in a simple and unified manner; simple
because of using abstract, basic primitive query operators, hiding as much implementation details
as possible, and unified because the primitives define specific data access functional behaviour
that accommodates different NoSQL stores.

In a few words, the NoDA API groups many of the fundamental query primitives (shown
in Table 2) and offers them in a comprehensive manner for performing query operations on
NoSQL databases. Most of them cover the ordinary querying operations, such as fetching data
that fulfills a specific condition or fetching a sorted column in ascending order. The primitive
operators can be combined together, so as to form complex query expressions as well.

9

D3.3 Primitive Query Operators H2020-ICT-2017-1

The functionality of the query primitives is described as follows:

• filter – performs filter operation/s given some (at least one) FilterOperator object type
arguments. More than one defined arguments entails that they are operands of an AND
(∩) boolean operator (conjunctive query).

• groupBy – performs a group operation on a column/s, the name of which are passed as
arguments. Specifically, it arranges the identical values of a specific column/s into groups.
It can be optionally used in conjunction with the aggregate primitive which performs aggre-
gations on column/columns. If the aggregate primitive is not defined, the group primitive
acts as a distinct statement, finding the unique values of the column/s.

• aggregate – performs an aggregation/s, the type of which are passed as arguments. Specifi-
cally, it performs specific computations depending on the aggregation type. If the groupBy
primitive has been preceded, then the aggregation/s are computed on the formed groups.

• distinct – performs a distinct operation on a column, finding the distinct (different) values.
The name of the column is passed as an argument.

• max – calculates the maximum value of a numeric column, the name of which is passed as
an argument.

• min – calculates the minimum value of a numeric column, the name of which is passed as
an argument.

• sum – calculates the sum value of a numeric column, the name of which is passed as an
argument.

• avg – calculates the average value of a numeric column, the name of which is passed as an
argument.

• count – calculates the number of records.

• sort – performs sort operation/s given some (at least one) SortOperator object type ar-
guments. If more than one SortOperator object arguments are declared, then the first
determines primary sorting, the next secondary sorting, and so on.

• limit – performs a limit operation concerning the records, retaining a specific number of
them which is passed as an argument.

• project – performs a project operation concerning the columns, retaining those of which
name are passed as argument

• toDataframe – fetches the results as a Dataset<Row> (a.k.a. Dataframe) object given that
the user has created a Spark session.

10

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 3.1 shows an example of using max and count query primitives.

Listing 3.1: Find the max value of a field and count the number of documents in a MongoDB
collection using NoDA

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

3 import java.util.Optional;

4

5 public static void main(String args[]){

6 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB()

7 .Builder("username","password","database").host("192.168.1.1").port(27027).build();

8

9 NoSqlDbOperators noSqlDbOp = noSqlDbSystem.operateOn("geoPoints");

10 Optional<Double> max = noSqlDbOp.max("aField");

11 int count = noSqlDbOp.count();

12

13 noSqlDbSystem.closeConnection();

14 }

The query primitives are classified into one of the following two categories: definition phase
and execution phase. The primitives that belong to the definition phase can be used in conjunc-
tion with each other as many times as needed. They are processed in a “lazy” manner, meaning
that they define a sequence of operations without being actually executed. These operations are
executed only when a primitive belonging to the execution phase is called, returning either a
primitive data type (int for the count query primitive) or a reference type (Optional<Double>
for the max, min, avg query primitives and Dataset<Row> for the toDataframe primitive) that
can be exploited afterwards. This separation is inspired by Apache Spark, which uses transfor-
mations and actions. Listing 3.2 illustrates the definition and execution phases. Note that using
the filter primitive more than once entails that all of their arguments are operands of an AND
(∩) boolean operator.

Listing 3.2: Example of definition and execution phases of primitive operators

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3

4 public class DataOperationsWithSpark {

5 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

6 Dataset<Row> dataset = noSqlDbOp.filter(...).filter(...) //definition phase

7 .groupBy(...).sort(...).project(...) //definition phase

8 .toDataframe(); //execution phase

9 }

10 }

Four types of filter operators are offered from the NoDA API; comparison, boolean, geo-
graphical and geotemporal, which are explained in Tables 3, 4, 5 and 6, respectively. In the
comparison operators presented in Table 3, data types T1 and T2 are defined as follows:

11

D3.3 Primitive Query Operators H2020-ICT-2017-1

T1 ∈ [short, int, long, float, double, boolean, Date, String]
T2 ∈ T1 - [boolean, String]

Table 3: Supported comparison operators

Comparison Operators Arguments

eq (String columnName, T1 columnValue)

gt (String columnName, T2 columnValue)

gte (String columnName, T2 columnValue)

lt (String columnName, T2 columnValue)

lte (String columnName, T2 columnValue)

ne (String columnName, T1 columnValue)

The comparison operators can be used as arguments of the filter query primitive since they
are a subtype of FilterOperator type. Their functionality is described as follows:

• eq – selects the records whose values of a specific column (its name is passed as the first
argument) equals (=) to a given value (passed as the second argument).

• gt – selects the records whose values of a specific column (its name is passed as the first
argument) is greater than (>) to a given value (passed as the second argument).

• gte – selects the records whose values of a specific column (its name is passed as the first
argument) is greater than or equal (≥) to a given value (passed as the second argument).

• lt – selects the records whose values of a specific column (its name is passed as the first
argument) is less than (<) to a given value (passed as the second argument).

• lte – selects the records whose values of a specific column (its name is passed as the first
argument) is less than or equal (≤) to a given value (passed as the second argument).

• ne – selects the records whose values of a specific column (its name is passed as the first
argument) is not equal (6=) to a given value (passed as the second argument).

Listing 3.3: Example of using a comparison operator - Find all of the 5 Star hotels in Greece

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.eq;

4

5 public class DataOperationsWithSpark {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5)).toDataframe();

8 }

9 }

The boolean operators can be used as arguments of the filter query primitive since they are
a subtype of FilterOperator type. Their functionality is described as follows:

12

D3.3 Primitive Query Operators H2020-ICT-2017-1

Table 4: Supported boolean operators

Boolean Operators Arguments

or (FilterOperator fop1, FilterOperator fop2, FilterOperator... fops)

and (FilterOperator fop1, FilterOperator fop2, FilterOperator... fops)

• or – performs the logical OR (∪) operation by selecting the records that satisfy the ex-
pression of at least one FilterOperation object types that are passed as arguments (at least
two are needed).

• and – performs the logical AND (∩) operation by selecting the records that satisfy the
expression of all FilterOperation object types that are passed as arguments (at least two
are needed).

Listing 3.4: Example of using a boolean operator - Find all of the 5 Star hotels in Greece located
in the city of Piraeus

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.*;

4

5 public class DataOperationsWithSpark {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7 Dataset<Row> dataset = noSqlDbOp

8 .filter(and(eq("star", 5), eq("city","Piraeus"))).toDataframe();

9 }

10 }

Table 5: Supported geographical operators

Geographical Operators Arguments

inGeoPolygon
(String columnName, Coordinates c1, Coordinates c2,

Coordinates c3, Coordinates... cs)

inGeoRectangle
(String columnName, Coordinates lowerBoundPoint,

Coordinates upperBoundPoint)

inGeoCircleKm (String columnName, Coordinates point, double radius)

inGeoCircleMeters (String columnName, Coordinates point, double radius)

inGeoCircleMiles (String columnName, Coordinates point, double radius)

geoNearestNeighbors (String columnName, Coordinates point, int neighbors)

The geographical operators can be used as arguments of the filter query primitive since they
are a subtype of FilterOperator type. Their functionality is described as follows:

• inGeoPolygon – selects the records whose spatial extent that is represented by a specific
column (its name is passed as the first argument), is entirely within a polygon. The polygon

13

D3.3 Primitive Query Operators H2020-ICT-2017-1

is defined by its corner points (its coordinates are passed as arguments - at least three are
needed).

• inGeoRectangle – selects the records whose spatial extent that is represented by a specific
column (its name is passed as the first argument), is entirely within a box. The box is
defined by its lower and upper bounding points (the coordinates of which are passed as the
second and third argument respectively).

• inGeoCircleKm – selects the records whose spatial extent that is represented by a specific
column (its name is passed as the first argument), is entirely within a circle. The circle is
defined by its center point (the coordinates of which are passed as the second argument)
and its radius in the kilometer unit (passed as the third argument).

• inGeoCircleMeters – selects the records whose spatial extent that is represented by a specific
column (its name is passed as the first argument), is entirely within a circle. The circle is
defined by its center point (the coordinates of which are passed as the second argument)
and its radius in the meter unit (passed as the third argument).

• inGeoCircleMiles – selects the records whose spatial extent that is represented by a specific
column (its name is passed as the first argument), is entirely within a circle. The circle is
defined by its center point (the coordinates of which are passed as the second argument)
and its radius in the mile unit (passed as the third argument).

• geoNearestNeighbors – selects a specified number of records (passed as the third argument)
whose spatial extent that is represented by a specific column (its name is passed as the
first argument), is the nearest to a specific point (the coordinates of which are passed as
the second argument).

Listing 3.5: Example of using a geographical operator - Find the 10 nearest hotels from a location

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.*;

4 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.*;

5

6 public class DataOperationsWithSpark {

7 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

8 Dataset<Row> dataset = noSqlDbOp.filter(geoNearestNeighbors("location",

9 Coordinates.newCoordinates(23.65, 37.94), 10)).toDataframe();

10 }

11 }

The geotemporal operators can be used as arguments of the filter query primitive since they
are a subtype of FilterOperator type. Their functionality is described as follows;

• inGeoTemporalPolygon – selects the records whose spatial extent that is represented by a
specific column (its name is passed as the first argument) is entirely within a polygon and

14

D3.3 Primitive Query Operators H2020-ICT-2017-1

Table 6: Supported geotemporal operators

Geotemporal Operators Arguments

inGeoTemporalPolygon
(String columnName, String temporalColumnName,

Date lowerBoundDate, Date upperBoundDate,

Coordinates c1, Coordinates c2, Coordinates c3, Coordinates... cs)

inGeoTemporalRectangle
(String columnName, Coordinates lowerBoundPoint,

Coordinates upperBoundPoint, String temporalColumnName,

Date lowerBoundDate, Date upperBoundDate)

inGeoTemporalCircleKm
(String columnName, Coordinates point,

double radius, String temporalColumnName

Date lowerBoundDate, Date upperBoundDate)

inGeoTemporalCircleMeters
(String columnName, Coordinates point,

double radius, String temporalColumnName

Date lowerBoundDate, Date upperBoundDate)

inGeoTemporalCircleMiles
(String columnName, Coordinates point,

double radius, String temporalColumnName

Date lowerBoundDate, Date upperBoundDate)

their temporal extent is in specific date range. The polygon is defined by its corner points
(its coordinates are passed as arguments - at least three are needed).

• inGeoTemporalRectangle – selects the records whose spatial extent that is represented by
a specific column (its name is passed as the first argument), is entirely within a box and
their temporal extent is in specific date range. The box is defined by its lower and upper
bounding points (the coordinates of which are passed as the second and third argument
respectively).

• inGeoTemporalCircleKm – selects the records whose spatial extent that is represented by
a specific column (its name is passed as the first argument), is entirely within a circle and
their temporal extent is in specific date range. The circle is defined by its center point (the
coordinates of which are passed as the second argument) and its radius in the kilometer
unit (passed as the third argument).

• inGeoTemporalCircleMeters – selects the records whose spatial extent that is represented
by a specific column (its name is passed as the first argument), is entirely within a circle
and their temporal extent is in specific date range. The circle is defined by its center point
(the coordinates of which are passed as the second argument) and its radius in the meter
unit (passed as the third argument).

• inGeoTemporalCircleMiles – selects the records whose spatial extent that is represented by
a specific column (its name is passed as the first argument), is entirely within a circle and

15

D3.3 Primitive Query Operators H2020-ICT-2017-1

their temporal extent is in specific date range. The circle is defined by its center point (the
coordinates of which are passed as the second argument) and its radius in the mile unit
(passed as the third argument).

Listing 3.6: Example of using a geotemporal operator - Find the spatial objects in a rectangle
with temporal constraint

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.*;

4 import java.text.ParseException;

5 import java.text.SimpleDateFormat;

6 import java.util.Date;

7 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.*;

8

9 public class DataOperationsWithSpark {

10 public static void doOperations(NoSqlDbOperators noSqlDbOp) throws ParseException {

11 SimpleDateFormat s = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS");

12 Date d1 = s.parse("2017-12-01T00:00:00.000Z");

13 Date d2 = s.parse("2017-12-02T23:59:59.999Z");

14 Coordinates c1 = Coordinates.newCoordinates(23.65, 37.94);

15 Coordinates c2 = Coordinates.newCoordinates(23.67, 37.96);

16

17 Dataset<Row> dataset = noSqlDbOp.filter(inGeoTemporalRectangle("location",

18 c1, c2, "date",d1,d2)).toDataframe();

19 }

20 }

Apart from the filter operators that are used in conjunction with the filter primitive, there
also exist aggregate and sort operators that are used with the aggregate and sort primitives.
These operators are shown in Tables 7 and 8, respectively.

Table 7: Supported aggregate operators

Aggregate Operators Arguments

max (String columnName)

min (String columnName)

avg (String columnName)

sum (String columnName)

count ()

countNonNull (String columnName)

countDistinct (String columnName)

The aggregate operators can be used as arguments of the aggregate query primitive, perform-
ing a calculation. Their functionality is described as follows;

• max – finds the maximum value of a numeric column whose name is passed as an argument.

• min – finds the minimum value of a numeric column whose name is passed as an argument.

16

D3.3 Primitive Query Operators H2020-ICT-2017-1

• avg – calculates the average value of a numeric column whose name is passed as an argu-
ment.

• sum – calculates the sum value of a numeric column whose name is passed as an argument.

• count – calculates the number of thr existing records.

• countNonNull – calculates the number of non-null values of a column whose name is passed
as an argument.

• countDistinct – calculates the number of distinct values of a column whose name is passed
as an argument.

Listing 3.7: Example of using an aggregate operator - Find the max and the average price per
day of 5-Star hotels

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.avg;

4 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.max;

5 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.eq;

6

7 public class DataOperationsWithSpark {

8 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

9 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5))

10 .aggregate(max("approximate_price_per_day",

11 avg("approximate_price_per_day")).toDataframe();

12 }

13 }

Table 8: Supported sort operators

Sort Operators Arguments

asc (String columnName)

desc (String columnName)

The sort operators can be used as arguments of the sort query primitive. Their functionality
is described as follows:

• asc – sorts a given column whose name is passed as an argument, in ascending order.

• desc – sorts a given column whose name is passed as an argument, in descending order.

17

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 3.8: Example of using a sort operator - Sort in ascending order the 5 Star hotels by their
approximate price per day

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.eq;

4 import static gr.ds.unipi.noda.api.core.operators.SortOperators.asc;

5

6 public class DataOperationsWithSpark {

7 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

8 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5))

9 .sort(asc("approximate_price_per_day")).toDataframe();

10 }

11 }

3.2 Technical Details

The development of NoDA was based on the Java Programming language under the Apache
Maven project manager tool. With Maven usage, we achieve to organize the API into distinct
parts. This modular design comes to an absolute harmony with the rationale of NoDA as it
is comprised by components. Each component has its unique role such as supporting the data
access operators upon a specific NoSQL engine.

noda-parent

noda-client
noda-

mongodb

noda-

redisearch
noda-core noda-hbase

Figure 2: Structure of the NoDA project

In technical terms, Maven splits the software components into modules, aiming to project
aggregation and project inheritance. This is achieved by the parent POM in which the modules
of the project are specified, inheriting the parent’s project dependencies.Modules can depend on
each other or may be independent under a project. NoDA modules are packed by the noda-parent

18

D3.3 Primitive Query Operators H2020-ICT-2017-1

project, as depicted in Figure 2. The project composes NoDA, aiming to group the modules under
a specific place. The contained modules are the following:

• noda-client – this module incorporates the functionality related to the connectivity of a
NoSQL engine. For all of the supported databases, there exists a respective programming
package that integrates the necessary operations for opening and closing a connection.
Moreover, the module contains the SQL component of NoDA for data accessing via the
SQL language. The structure of this module is explained in Section 3.3.3.

• noda-core – this module contains the core code of NoDA where its functionality is organized
into packages. The module constitutes the abstract layer where it offers to the developers
a set of well-defined data access operators upon the NoSQL engines. Most of the contained
Java classes are inherited from the rest (aftermentioned) modules of the NoDA project.
The structure of this module will be explained in this subsection.

• noda-mongodb – this module contains all of the required Java classes, implementing the
functionality of NoDA over MongoDB. Most of the classes inherit from the corresponding
classes in the noda-core module. The structure of this module is explained in Section 3.4.2.

• noda-hbase – this module contains all of the required Java classes, implementing the func-
tionality of NoDA over HBase. Most of the classes inherit from the corresponding classes
in the noda-core module. The structure of this module is explained in Section 3.5.2.

• noda-redisearch – this module contains all of the required Java classes, implementing the
functionality of NoDA over Redis (with the usage of RediSearch library). Most of the
classes inherit from the corresponding classes in the noda-core module. The structure of
this module is explained in Section 3.6.2.

The features of NoDA are imprinted in the contained Java classes in noda-core module.
Specifically, this module contains in abstract form functional elements that should be inherited
and implemented for a specific NoSQL system. This justifies the fact that the majority of
Java classes are abstract, since the basic form of functional elements is offered mainly, being
common for all databases. Its design adopts the bottom-up approach; the functional elements
are synthesized by small units (Java classes) which operate autonomously or in combination with
each other. This makes the core part of NoDA more flexible in terms of adding more features
without having to refactor code in other classes.

Mainly, two types of functional elements are provided abstractly from the noda-core so as to
be implemented from the rest of the modules; data access operators and database connectivity
operations in a lesser extent, as NoDA focuses primarily to equip its users with access operators.
These are modelled by the following classes, interfaces and abstract classes, grouped by packages
(namespaces are shown with bold text) based on their conceptual role:

• gr.ds.unipi.noda.api.core.constants

19

D3.3 Primitive Query Operators H2020-ICT-2017-1

– Commons - class which contains the API constants

• gr.ds.unipi.noda.api.core.nosqldb

– NoSqlConnectionFactory – abstract class that contains abstract methods for access-
ing the query primitives and closing the established connection in a NoSQL database.
These methods are implemented from the modules which provide NoDA API upon
specific NoSQL databases. Particularly, this is performed through inheritance, where
the connection factory classes of the modules extend this class. Also, this class ini-
tializes in a concrete method the base operator factory classes for using the supported
data access operators through their facets.

– NoSqlDbConnectionManager – abstract class that contains concrete and abstract
methods for managing the connections to NoSQL stores. A connection is stored to a
dictionary data structure in <key, value> form. The key is a NoSqlDbConnector ob-
ject type, representing a specific type of connection with its related information. The
value is an object in generic type, specified explicitly in the modules that implement
the NoDA API over specific NoSQL stores. This class is inherited by the connection
manager classes of the respective modules.

– NoSqlDbConnector – interface that represents a specific NoSQL database connection.
It is used by the NoSqlDbConnectionManager class for managing the NoSQL database
connections. By implementing this interface, both equals and hashCode methods have
to be implemented since they are used by the dictionary structure in the NoSqlDbCon-
nectionManager class when checking the existence of a connection. In other words,
this class represents the information associated with a unique connection to a NoSQL
store. It is extended by the respective connector classes of the modules that implement
the NoDA API over specific NoSQL stores.

– NoSqlDbOperators – abstract class that contains abstract methods, defining the sup-
ported query primitives of the API. The classes are implemented through inheritance
by the respective operators classes of the modules that provide the NoDA API over
specific NoSQL stores.

• gr.ds.unipi.noda.api.core.operators

– Operator – inteface that represents an operator through an expression whose type
is generic, defined explicitly in the modules that implement the NoDA API over a
specific NoSQL store.

– FilterOperators – class that contains only static methods, offering the filter operators
to the users of the API.

– AggregateOperators – class that contains only static methods, offering the aggregate
operators to the users of the API.

20

D3.3 Primitive Query Operators H2020-ICT-2017-1

– SortOperators – class that contains only static methods, offering the sorting operators
to the users of the API.

• gr.ds.unipi.noda.api.core.operators.filterOperators

– FilterOperator – interface that extends the Operator interface, representing a filter
operator type.

• gr.ds.unipi.noda.api.core.operators.filterOperators.comparisonOperators

– BaseComparisonOperatorFactory – abstract class containing only abstract methods,
acting as a facet of comparison operators in order to be forwarded to the FilterOpera-
tors class. The abstract methods of this class are implemented through inheritance by
the respective base comparison operator factory classes of the modules that provide
the NoDA API over specific NoSQL stores.

– ComparisonOperator – abstract class that implements the FilterOperator, representing
a filter operator type, particularly a comparison operator. It is extended by the
respective comparison operator abstract classes of the modules that implement the
NoDA API over specific NoSQL stores.

• gr.ds.unipi.noda.api.core.operators.filterOperators.logicalOperators

– BaseLogicalOperatorFactory – abstract class containing only abstract methods, acting
as a facet of logical operators in order to be forwarded to the FilterOperators class. The
abstract methods of this class are implemented through inheritance by the respective
base logical operator factory classes of the modules that provide the NoDA API over
specific NoSQL stores.

– LogicalOperator – abstract class that implements the FilterOperator, representing a
filter operator type, particularly a logical operator. Extended by the respective logical
operator abstract classes of the modules that implement the NoDA API over specific
NoSQL stores.

• gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators

– Coordinates – class that represents coordinates information (longitude, latitude).

– QuadTreeInstance – class that represents a QuadTree instance, exploited by noda-
mongo and noda-redisearch for kNN querying.

• gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.geometries

– Geometry – abstract class that represents a Geometry (shape) by its coordinates.
When a geometry is defined, its coordinates are checked for validity so as to define an
existing location on earth.

21

D3.3 Primitive Query Operators H2020-ICT-2017-1

– Point – class that extends the Geometry abstract class, representing a point by its
coordinates.

– Rectangle – class that extends the Geometry abstract class, representing a rectangle
by its lower and upper bound coordinates.

– Circle – class that extends the Geometry abstract class, representing a circle by its
center coordinates and its radius.

– Polygon – class that extends the Geometry abstract class, representing a polygon by
a set of coordinates.

• gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators
.geographicalOperators

– BaseGeographicalOperatorFactory – abstract class containing only abstract methods,
acting as a facet of geographical operators in order to be forwarded to the FilterOpera-
tors class. The abstract methods of this class are implemented through inheritance by
the respective base geographical operator factory classes of the modules that provide
the NoDA API over specific NoSQL stores.

– GeographicalOperator – abstract class that implements the FilterOperator, represent-
ing a filter operator type, particularly a geographical operator. It is extended by the
respective geographical operator abstract classes of the modules that implement the
NoDA API over specific NoSQL stores.

• gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators
.geoTemporalOperators

– BaseGeoTemporalOperatorFactory – abstract class containing only abstract methods,
acting as a facet of geotemporal operators in order to be forwarded to the FilterOpera-
tors class. The abstract methods of this class are implemented through inheritance by
the respective base geotemporal operator factory classes of the modules that provide
the NoDA API over specific NoSQL stores.

– GeoTemporalOperator – abstract class that implements the FilterOperator, represent-
ing a filter operator type, particularly a geotemporal operator. It is extended by the
respective geotemporal operator abstract classes of the modules that implement the
NoDA API over specific NoSQL stores.

• gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators
.geoTemporalOperators.temporal

– Temporal – abstract class that represents temporal information

– SingleTemporalValue – class that extends the Temporal abstract class, representing a
specific date.

22

D3.3 Primitive Query Operators H2020-ICT-2017-1

– TemporalBounds – class that extends the Temporal abstract class, representing a
specific time period by its lower and upper bound date.

• gr.ds.unipi.noda.api.core.operators.aggregateOperators

– BaseAggregateOperatorFactory – abstract class containing only abstract methods, act-
ing as a facet of aggregate operators in order to be forwarded to the AggregateOperators
class. The abstract methods of this class are implemented through inheritance by the
respective base aggregate operator factory classes of the modules that provide the
NoDA API over specific NoSQL stores.

– AggregateOperator – abstract class that implements the Operator interface, represent-
ing an aggregation operator type. It is extended by the respective aggregate operator
abstract classes of the modules that implement the NoDA API over specific NoSQL
stores.

• gr.ds.unipi.noda.api.core.operators.sortOperators

– BaseSortOperatorFactory – abstract class containing only abstract methods, acting as
a facet of sorting operators in order to be forwarded to the SortOperators class. The
abstract methods of this class are implemented through inheritance by the respective
base sort operator factory classes of the modules that provide the NoDA API upon
specific NoSQL stores.

– SortOperator – abstract class that implements the Operator interface, representing a
sort operator type. Extended by the respective sort operator abstract classes of the
modules that implement the NoDA API upon specific NoSQL databases.

The usage of base operator factory classes, as the facet of the provided operators, adds on them
the following two features: i) to be offered uniquely under concrete classes (FilterOperators,
AggregateOperators and SortOperators), thus being storage-agnostic, and ii) to have a particular
functionality determined solely by the module that implements the API over a NoSQL store.

Most of the Java abstract classes and interfaces are extended and implemented correspond-
ingly by the classes of the rest modules of the NoDA API (except the noda-client module). This
is reasonable since the functionality of the API on a particular store is determined in the said
modules, leveraging on the native libraries of the databases. In other words, implementation
details upon a NoSQL store are not found in the noda-core module as it does not aim to provide
any functionality oriented to a database; its main purpose is to have an abstract form so that
any NoSQL store may embody it. The classes of the noda-core module are depicted using three
UML class diagrams in Figs. 3, 4, 5, respectively, in different views.

Fig. 3 shows the UML class diagram of the noda-core module regarding the connectivity of
NoDA to NoSQL database. Fig. 4 shows the UML class diagram of the noda-core module that
is related to the operators for data accessing. The figure includes also the units that offer a

23

D3.3 Primitive Query Operators H2020-ICT-2017-1

special characteristic to the operators. For example, the spatial extent of the Geographical and
GeoTemporal operator is offered by the Geometry class. Fig. 5 shows the UML class diagram
of the noda-core module that have to do with the data access operators and the classes which
forward them for to the modules that implement NoDA’s functionality upon a NoSQL store.

24

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 3: UML class diagram of noda-core module, associated with the connectivity of NoSQL
System and the data access operators.

25

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 4: UML class diagram of noda-core module, associated with the data access operators
and their units.

26

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 5: UML class diagram of noda-core module, associated with the data access operators
and their facets for utilizing them

27

D3.3 Primitive Query Operators H2020-ICT-2017-1

The materialization of the NoDA API takes place in the noda-mongodb, noda-hbase, noda-
redisearch modules, for the MongoDB, HBase and Redis NoSQL stores, respectively. The ma-
jority of the contained classes extend the core classes.

3.3 Interfaces

NoDA offers two types of interfaces that can be exploited by big data developers, so as to define
operations for accessing the data over a NoSQL store. These interfaces are implemented in
the noda-client module which constitutes an integral part of the NoDA project. Concretely, the
module aims to link the users/developers with the NoDA API. This is done by offering a common
client interface on which every supported NoSQL store from the API, integrates the required
arguments for establishing a connection to the NoSQL database. Then, after the connection has
been defined, a choice is offered for either using the programming interface or the SQL interface
for data access. This module depends on the other modules of the NoDA project, as it uses them
to fulfil the users’ requests. It also depends on the ANTLR2 tool which is used for accessing the
SQL expressions. ANTLR is a parser generator for reading, processing, executing, or translating
structured text or binary files. Given a grammar, ANTLR generates a parser, builds parse trees,
and generates a listener interface (or visitor) that makes it easy to respond to the recognition of
phrases.

3.3.1 Programming interface

Assuming that we have a dataset of all of the hotels around the world with some related informa-
tion (number of stars, city and price per day) stored in a NoSQL store. As shown in Listing 3.9,
we can fetch via the programming interface the first 20 cities and their 5-star hotels average price
per day that is greater than 500 Euros, sorted in ascending order by their average price.

2https://www.antlr.org/

28

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 3.9: By using the query primitives, get the first 20 cities and their their 5-star hotels
average price per day that is greater than 500 Euros, sorted in ascending order by their average
price

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.avg;

6 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.eq;

7 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.gt;

8 import static gr.ds.unipi.noda.api.core.operators.SortOperators.desc;

9

10 public class DataOperationsWithSpark {

11 public static void doOperationsOnNoSqlDbSystem(NoSqlDbSystem noSqlDbSystem) {

12 NoSqlDbOperators noSqlDbOp = noSqlDbSystem.operateOn("hotels");

13

14 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5))

15 .groupBy("city").aggregate(avg("price_per_day"))

16 .filter(gt("AVG(price_per_day)", 500))

17 .sort(asc("AVG(price_per_day)"))

18 .limit(20).project("city", "AVG(price_per_day)")

19 .toDataframe();

20 }

21 }

When utilizing the aggregations via the programming interface for computing a value given
a column, its projection is named by default as "YYY(column)", where YYY is the capitalized
abbreviation of the aggregation. For example, by using the primitive .aggregate(min("column")),
its respecitve projection is named as MIN(column). The same applies for the SQL interface;
aggregate functions are declared as "YYY(column)" and projected exactly as referred.

3.3.2 SQL interface

The equivalent to Listing 3.9 but expressed in SQL, is shown in Listing 3.10

29

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 3.10: By using the SQL interface, get the first 20 cities and their their 5-star hotels
average price per day that is greater than 500 Euros, sorted in ascending order by their average
price

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsWithSpark {

6 public static void doOperationsOnNoSqlDbSystem(NoSqlDbSystem noSqlDbSystem) {

7 String sqlStatement = "SELECT city, AVG(price_per_day) FROM hotels " +

8 "WHERE star=5 GROUP BY city HAVING AVG(price_per_day) > 500 " +

9 "ORDER BY AVG(price_per_day) ASC LIMIT 20" ;

10 NoSqlDbSqlStatement noSqlDbSqlStmt = noSqlDbSystem.sql(sqlStatement);

11

12 Dataset<Row> dataset = noSqlDbSqlStmt.toDataframe();

13 }

14 }

The SQL interface is based on the programming interface, as it uses it in the background
by calling its functions. Given an SQL statement, the statement is parsed and a logical tree
comprised of nodes-operators is formed. Then, the nodes are accessed in a specific manner, aiming
to express the SQL statement in successive query primitives. Figure 6 shows each SQL clause
with a specific color and its corresponding query primitive in the same color, when expressed via
the programming interface.

SELECT city, AVG(price_per_day)
FROM hotels
WHERE star=5
GROUP BY city
HAVING AVG(price_per_day) > 500
ORDER BY AVG(price_per_day) ASC
LIMIT 20

⟹
.operateOn(“hotels”)
.filter(eq(“star”, 5)).groupBy(“city”)
.aggregate(avg(“price_per_date”))
.filter(gt(“AVG(price_per_day)”, 500))
.sort(asc(“AVG(price_per_day)”))
.limit(20)
.project(“city”, “AVG(price_per_day)”)

Figure 6: Example of SQL expression and NoDA query primitives mapping, depicted with colors

In order to support the spatial and spatio-temporal operators of NoDA API through the SQL
Interface, we define the equivalent SQL functions listed on Table 9. The functions can be used
in the WHERE clause of SQL.

Table 10 shows the arguments of supported SQL spatio-temporal functions. The coordinates
must have the (longitude, latitude) form (including the parenthesis). Dates are passed
as strings in the form ’dd/MM/YYYY HH:mm:ss’. Column names should not be passed with
double or single quotes. Examples are shown later in this report, in Listings 4.11, 4.12, 4.13 and
4.15.

30

D3.3 Primitive Query Operators H2020-ICT-2017-1

Table 9: SQL spatio-temporal functions and the corresponding NoDA geoperators

SQL function Equivalent NoDA Geoperator

GEO_POLYGON inGeoPolygon

GEO_RECTANGLE inGeoRectangle

GEO_CIRCLE_KM inGeoCircleKm

GEO_CIRCLE_ME inGeoCircleMeters

GEO_CIRCLE_MI inGeoCircleMiles

GEO_NEAREST_NEIGHBORS geoNearestNeighbors

GEO_TEMPORAL_POLYGON inGeoTemporalPolygon

GEO_TEMPORAL_RECTANGLE inGeoTemporalRectangle

GEO_TEMPORAL_CIRCLE_KM inGeoTemporalCircleKm

GEO_TEMPORAL_CIRCLE_ME inGeoTemporalCircleMeters

GEO_TEMPORAL_CIRCLE_MI inGeoTemporalCircleMiles

3.3.3 Related Module Technical Details

The noda-client module consist of the following packages with their respective concrete and
abstract classes:

• gr.ds.unipi.noda.api.client

– NoSqlDbSystem – abstract class that represents the common form of the client inter-
face. It is extended by the System classes in the other packages (except of the SQL)
where each store integrates its required arguments for the connection establishment.

• gr.ds.unipi.noda.api.mongo

– MongoDBBuilderFactory – concrete class that specifies some Builders for the required
parameters when establishing a connection to MongoDB.

– MongoDBSystem – concrete class that extends the NoSqlDbSystem abstract class for
configuring the client interface over MongoDB.

• gr.ds.unipi.noda.api.hbase

– HBaseBuilderFactory – concrete class that specifies a single Builder without param-
eters as they are defined in the next step for establishing a connection to HBase.

– HBaseSystem – concrete class that extends the NoSqlDbSystem abstract class for
configuring the client interface over HBase.

• gr.ds.unipi.noda.api.redisearch

– RediSearchBuilderFactory – concrete class that specifies some Builders for the required
parameters when establising a connection to RedisSearch.

31

D3.3 Primitive Query Operators H2020-ICT-2017-1

Table 10: SQL spatio-temporal functions arguments

SQL function Arguments

GEO_POLYGON
(locationColumnName, [coordinates1,

coordinates2, coordinates3, ...])

GEO_RECTANGLE
(locationColumnName, [lowerCoordinates,

upperCoordinates])

GEO_CIRCLE_KM (locationColumnName, coordinates, radiusInKm)

GEO_CIRCLE_ME (locationColumnName, coordinates, radiusInMe)

GEO_CIRCLE_MI (locationColumnName, coordinates, radiusInMi)

GEO_NEAREST_NEIGHBORS (locationColumnName, coordinates, neighbors)

GEO_TEMPORAL_POLYGON

(locationColumnName, [coordinates1,

coordinates2, coordinates3, ...],

temporalColumnName, lowerDate, upperDate)

GEO_TEMPORAL_RECTANGLE

(locationColumnName, [lowerCoordinates,

upperCoordinates], temporalColumnName,

lowerDate, upperDate)

GEO_TEMPORAL_CIRCLE_KM
(locationColumnName, coordinates, radiusInKm,

temporalColumnName, lowerDate, upperDate)

GEO_TEMPORAL_CIRCLE_ME
(locationColumnName, coordinates, radiusInMe,

temporalColumnName, lowerDate, upperDate)

GEO_TEMPORAL_CIRCLE_MI
(locationColumnName, coordinates, radiusInMi,

temporalColumnName, lowerDate, upperDate)

– RediSearchSystem – concrete class that extends the NoSqlDbSystem abstract class for
configuring the client interface over RedisSearch.

– RediSearchSentinelSystem – concrete class that extends the NoSqlDbSystem abstract
class for configuring the client interface over RedisSearch when sentinels are used.
Sentinel is a node that keeps track on master node and other slave nodes. Sentinels
constitute a monitoring solution for Redis instances, handling automatic failover of
Redis masters and service discovery.

• gr.ds.unipi.noda.api.sql

– CaseChangingCharStream – concrete class that converts an SQL statement characters
to lower or upper case (upper case conversion is used in the API).

– NoSqlDbSqlStatement – concrete class that represents the operation that will occur
after the definition of the SQL expression.

– NoSqlDbSqlStatementListener – concrete class that extends from the SqlBaseBaseLis-
tener so as to parse the SQL statement in the form of tree whose nodes are operators.

32

D3.3 Primitive Query Operators H2020-ICT-2017-1

These operators are mapped with the query primitives of NoDA and the offered op-
erators.

– SqlBaseBaseListener – generated class from the ANTLR tool which represents the
base listener of SQL base

– SqlBaseLexer – generated class from the ANTLR tool which represents the SQL base
lexer

– SqlBaseListener – generated class from the ANTLR tool which represents the listener
of SQL base

– SqlBaseParser – generated class from the ANTLR tool which represents the SQL base
parser

33

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 7: UML class diagram of noda-client module

34

D3.3 Primitive Query Operators H2020-ICT-2017-1

3.4 Implementation for MongoDB

MongoDB is a document-oriented NoSQL database, storing data as documents which are BSON
(binary structured object notation) objects – serialized JSON objects. A document contains
pairs of fields and values, where values can be a specific data type such as string, numeric,
boolean, etc. Documents are organized in collections which are namespaces that group data
without enforcing a specific schema; every document may have different fields. Collections are
organized in databases which constitute physical containers of them with their own set of files
on the file system.

The support of schema-less data models offers the advantage of handling cases where the
schema changes frequently. Also, every document can store all of the information related to
it in different fields, supporting simultaneously sub-documents (nested documents). This is
advantageous for queries as all of the required data is included to the document, without having to
perform join operations between collections (as most NoSQL stores, MongoDB does not support
joins). The replication of related data to documents leads to denormalized datasets, forming a
hierarchical structure.

MongoDB supports horizontal scalability through sharding, meaning that it can exploit ad-
ditional nodes/shards for handling datasets across multiple machines. A shard is a MongoDB
instance which contains a subset of the data for a sharded cluster. Shards hold the entire data
set of the cluster. MongoDB supports also data replication which aims to deal with automated
failover via replica dataset. We refer to Deliverable D3.2 for a more detailed description of
MongoDB, and we omit further details here.

3.4.1 Loading and Querying Spatio-temporal Data

In order to insert data in MongoDB, a pre-processing step is required for forming the data
in JSON format if they exist in other format such as CSV which includes delimeter separated
records. Then, by having the data in JSON format, we use the mongodb java driver for converting
them to Documents (BSON objects) and doing bulk insertion simultaneously; every JSON record
is converted to a Document and then added to a list. The list is sent to the database when
having specific number of elements. This is an alternative way of inserting documents to the
database (bulk insertion), more efficient than the common one which is the one-by-one insertion
of documents to the database.

Since NoDA focuses on data with spatial extent, the documents should contain the spatial
coordinates in particular form. Specifically, each document should contain GeoJSON object since
they are supported by the 2dsphere index which is exploited for spatial and spatio-temporal
querying. The GeoJSON field is added when modeling the data as Documents, at the insertion
phase as mentioned previously.

MongoDB does offer many types of indexes, such as single-field, compound, geospatial, mul-

35

D3.3 Primitive Query Operators H2020-ICT-2017-1

tikey, and text, which boost the performance of query execution. However, it does not provide
built-in mechanisms oriented to indexing spatio-temporal data that is stored in a collection. One
can exploit the compound index (2dsphere and single-value index combination) over the location
and time fields for performing spatio-temporal queries. In this way, the order of the fields listed
in a compound index is significant, since (for a given spatio-temporal query) the index will first
scan the keys of the first field and then it will scan the keys of the second field following their
declared order. Essentially, this means that performance is largely based on the selectivity of the
constraint (spatial or temporal) on the first field of the compound index.

Motivated by this, we adopt the following indexing approach. We map every spatio-temporal
point to to one-dimensional values by exploiting the Hilbert space-filling curve. In other words,
we partition the space to disjoint 3D cells where each one covers a specific geographical area for a
specific time period. Then, a space-filling curve is used in order to map cells to one-dimensional
(1D) values, in a way that it preserves the locality in the 3D space also in the 1D mapping.
Every cell is represented by a unique value. By adding this value to each spatio-temporal point
as a field (on the insertion phase when Document is formed by a JSON record), we build a
single-value index based on it. At query time, a spatio-temporal query can exploit the index by
determining at first the value of the 3D cell in which it belongs. Then, having the value of the
3D cell, the index can retrieve all of the documents whose spatio-temporal part is enclosed by
the cell. This requires a refinement as a final step, where the spatial and temporal fields of the
documents should be checked against the query constraints.

3.4.2 Related Module Technical Details

The noda-mongodb module consists of the following concrete classes and abstract classes grouped
by packages (depicted in Figure 8 using a class diagram).

• gr.ds.unipi.noda.api.mongodb

– MongoDBConnectionFactory – concrete class that extends NoSqlDbConnectionFac-
tory core abstract class so as to provide to the user of the API the query primitives
and the choice of closing the established database connection to MongoDB.

– MongoDBConnectionManager – concrete class that extends NoSqlDbConnectionMan-
ager core abstract class for managing the connections on MongoDB. The class manages
the dictionary data structure which stores the MongoDB connections in <key, value>
form where key is a MongoDBConnector object and value is MongoClient object of-
fered by the mongodb-java-driver native library.

– MongoDBConnector – concrete class that implements the NoSqlDbConnector core
interface, so as to be used in the MongoDBConnectionManager class when checking
the existence of a connection to a MongoDB store. The class retains information
related to the connection, such as IP addresses and credentials, used by its equals and
hashCode methods.

36

D3.3 Primitive Query Operators H2020-ICT-2017-1

– MongoDBOperators – concrete class that extends NoSqlDbOperators, offering the
functionality of query primitives for the MongoDB store.

• gr.ds.unipi.noda.api.mongodb.filterOperators.comparisonOperators

– MongoDBComparisonOperatorFactory – concrete class that extends BaseComparison-
OperatorFactory core abstract class, acting as a facet of comparison operators over
MongoDB in order to be forwarded to the FilterOperators core concrete class.

– ComparisonOperator – abstract class that extends the ComparisonOperator core ab-
stract class, representing a comparison operator over MongoDB. It is extended by the
concrete classes of this package that represent a particular comparison operator.

– OperatorEqual – concrete class that extends ComparisonOperator abstract class, im-
plementing the equals conditional operator over MongoDB.

– OperatorGreaterThan – concrete class that extends ComparisonOperator abstract
class, implementing the greater than conditional operator over MongoDB.

– OperatorGreaterThanEqual – concrete class that extends ComparisonOperator ab-
stract class, implementing the greather than equal conditional operator over Mon-
goDB.

– OperatorLessThan – concrete class that extends ComparisonOperator abstract class,
implementing the less than conditional operator over MongoDB.

– OperatorLessThanEqual – concrete class that extends ComparisonOperator abstract
class, implementing the less than equal conditional operator over MongoDB.

– OperatorNotEqual – concrete class that extends ComparisonOperator abstract class,
implementing the not equals conditional operator over MongoDB.

• gr.ds.unipi.noda.api.mongodb.filterOperators.logicalOperators

– MongoDBLogicalOperatorFactory – concrete class that extends BaseLogicalOperator-
Factory core abstract class, acting as a facet of logical operators over MongoDB in
order to be forwarded to the FilterOperators core concrete class.

– LogicalOperator – abstract class that extends the LogicalOperator core abstract class,
representing a logical operator over MongoDB. It is extended by the concrete classes
of this package that represent a particular logical operator.

– OperatorAnd – concrete class that extends LogicalOperator abstract class, implement-
ing the and logical operator over MongoDB.

– OperatorOr – concrete class that extends LogicalOperator abstract class, implement-
ing the or logical operator over MongoDB.

• gr.ds.unipi.noda.api.mongodb.filterOperators.geoperators
.geographicalOperators

37

D3.3 Primitive Query Operators H2020-ICT-2017-1

– MongoDBGeographicalOperatorFactory – concrete class that extends BaseGeograph-
icalOperatorFactory core abstract class, acting as a facet of geographical operators
over MongoDB in order to be forwarded to the FilterOperators core concrete class.

– GeographicalOperator – abstract class that extends the GeographicalOperator core
abstract class, representing a geographical operator over MongoDB. It is extended by
the concrete classes of this package that represent a particular geographical operator.

– OperatorInGeoRectangle – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial rectangle filter operator over MongoDB.

– OperatorInGeoCircle – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial circle filter operator over MongoDB.

– OperatorInGeoPolygon – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial polygon filter operator over MongoDB.

– OperatorGeoNearestNeighbors – concrete class that extends GeographicalOperator ab-
stract class, implementing the geospatial nearest neighboors operator over MongoDB.

• gr.ds.unipi.noda.api.mongodb.filterOperators.geoperators
.geoTemporalOperators

– MongoDBGeoTemporalOperatorFactory – concrete class that extends BaseGeoTem-
poralOperatorFactory core abstract class, acting as a facet of geotemporal operators
over MongoDB in order to be forwarded to the FilterOperators core concrete class.

– GeoTemporalOperator – abstract class that extends the GeoTemporalOperator core
abstract class, representing a geotemporal operator over MongoDB. It is extended by
the concrete classes of this package that represent a particular geotemporal operator.

– OperatorInGeoTemporalRectangle – concrete class that extends GeographicalOperator
abstract class, implementing the geotemporal rectangle filter operator over MongoDB.

– OperatorInGeoTemporalCircle – concrete class that extends GeographicalOperator ab-
stract class, implementing the geotemporal circle filter operator over MongoDB.

– OperatorInGeoTemporalPolygon – concrete class that extends GeographicalOperator
abstract class, implementing the geotemporal polygon filter operator over MongoDB.

• gr.ds.unipi.noda.api.mongodb.aggregateOperators

– MongoDBAggregateOperatorFactory – concrete class that extends BaseAggregateOp-
eratorFactory core abstract class, acting as a facet of aggregate operators over Mon-
goDB in order to be forwarded to the AggregateOperators core concrete class.

– AggregateOperator – abstract class that extends the AggregateOperator core abstract
class, representing an aggregate operator over MongoDB. It is extended by the con-
crete classes of this package that represent a particular aggregate operator.

38

D3.3 Primitive Query Operators H2020-ICT-2017-1

– OperatorAvg – concrete class that extends AggregateOperator abstract class, calcu-
lating the average of a set of numeric values that may result from applying a specified
group expression over MongoDB.

– OperatorMin – concrete class that extends AggregateOperator abstract class, calcu-
lating the minimum value of a set of numeric values that may result from applying a
specified group expression over MongoDB.

– OperatorMax – concrete class that extends AggregateOperator abstract class, calcu-
lating the maximum value of a set of numeric values that may result from applying a
specified group expression over MongoDB.

– OperatorSum – concrete class that extends AggregateOperator abstract class, cal-
culating the sum value of a set of numeric values that may result from applying a
specified group expression over MongoDB.

– OperatorCount – concrete class that extends AggregateOperator abstract class, cal-
culating the number of documents that may result from applying a specified group
expression over MongoDB.

– OperatorCountNonNull – concrete class that extends AggregateOperator abstract
class, calculating the number of non-null values in a set that may result from ap-
plying a specified group expression over MongoDB.

• gr.ds.unipi.noda.api.mongodb.sortOperators

– MongoDBSortOperatorFactory – concrete class that extends BaseSortOperatorFac-
tory core abstract class, acting as a facet of sort operators over MongoDB in order to
be forwarded to the SortOperators core concrete class.

– SortOperator – abstract class that extends the SortOperator core abstract class, rep-
resenting a sort operator over MongoDB. Extended by the concrete classes of this
package that represent a particular sort operator.

– OperatorAsc – concrete class that extends SortOperator abstract class, sorting the
documents in ascending order by a column on the MongoDB store.

– OperatorDesc – concrete class that extends SortOperator abstract class, sorting the
documents in descending order by a column on the MongoDB store.

39

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 8: UML class diagram of noda-mongdb module

40

D3.3 Primitive Query Operators H2020-ICT-2017-1

3.5 Implementation for HBase

HBase is a wide-column NoSQL database, storing data as byte arrays in HDFS. All data is stored
in tables with rows and columns like in relational databases. Every row consists of cells which
are the smallest basic unit of storage. A cell constitutes the actual stored value in a column in
serialized form. It embodies versioning, meaning that it can store different values based on their
timestamp. Each row has a unique key (row id) associated with it, being its identifier. This kind
of identifier can be any type, as it is stored as a byte array too. Given a row id, we can access
its associated columns (cells).

In HBase, columns are organized under specific groups named column families. Column
families are stored separately on disk, offering fast column retrieval. Given a row id, a column
name and its column family, we can access its actual value of it (cell). As byte arrays are accessed,
they are implicitly converted to the data equivalent representation.

The underlying storage of HBase is based on HFiles which stores the row ids in lexicographic
order. HFile is a block index file format where data is stored in a sequence of blocks and a
separate index is maintained at the end of the file to locate the blocks.

HBase supports horizontal scalability, utilizing RegionServers which collocate with the HDFS
DataNodes. A RegionServer contains a subset from a dataset where rows in a table are stored
between the region’s start key and end key. RegionServers are coordinating through the HBase
Master which handles region assignment and operations related with create and delete tables.

3.5.1 Loading and Querying spatial data

When inserting a record to the HBase store, a row key being the unique identifier of the record
is defined. This simulates the index key, as HBase does not offer directly indexes but integrates
their rationale through filter operations on the row key. Two columns families are declared; one
for storing columns related to the location and time (longitude, latitude, date) of the spatio-
temporal point and another one for storing the remaining information related to it. This type
of column separation is applied, since column families are stored in different files. This enhances
the performance of a spatial query in the refinement phase as only the required information is
accessed.

Since we focus on spatio-temporal querying and there exist efficient filters operating on Row
Keys, the Row Key is formed so as to integrate both spatial and temporal information. This
is achieved by using the geohash string value for the spatial field with a Unix timestamp for
the temporal field. These fields are combined with a random string in sequence. Through the
integration of a random string value on the Row key, it is possible to have distinct keys for
records whose spatial and temporal information is represented by the same values.

The geohash value represents a specific region on earth, enclosed by another region which
is also represented by a geohash value with fewer characters. These regions are resulted from

41

D3.3 Primitive Query Operators H2020-ICT-2017-1

geohashing, a technique invented by Gustavo Niemeyer. Geohashing is a geocoding method
used to encode geographic coordinates (latitude and longitude) into a short string of digits and
letters. The regions are cells with varying resolutions. The more characters in the geohash string,
the more precise the location it represents. The geohash technique is based on the rationale of
splitting the space by using bits. Particularly, it specifies a point as an encoded string of bits,
in which every bit indicates the divisions of the longitude and latitude ([-180, 180] x [-90, 90])
rectangle as shown in Figure 9. The division starts from splitting the rectangle into two squares
([-180, 0] x [-90, 90]) and ([0, 180] x [-90, 90]). Points belonging to the left of the vertical division
begin with 0 and the one in the right with 1. Then the next split that occurs is horizontal. The
points below the horizontal split receive 0 and the ones above 1. The splitting continues until
achieving the desired resolution, following the z-ordering.

0101

0100

0001

0111

0010

0110

0011

1101

1000

1100

1001

1111

1010

1110

1011

0000

Figure 9: Geohashing space splitting

The fuzzy row filter is one of the built-in filters of HBase which operates on the row id. It
takes as parameters a row key with fuzzy info to match row keys. The row key may contain
string characters with the ’?’ wildcard characters. The wildcard indicates that at a specific
position may match any character of the fetched keys, whereas any other character defines exact
matching. Given that the adopted row key format is geohash-timestamp_-randomstring, an
input key gbsuv7zv-?????????????-????? would fetch all the row keys that start with gbsuv7zv.
Equivalently, this means that the points that exist in the area represented by this specific geohash
are returned from the execution of the filter. This is the approach adopted by NoDA for querying
HBase.

In NoDA, we use a geohash string for storing points that consists of 8 characters, the Unix
timestamp of 13 numerical digits and the random string of 5 characters. Given a spatio-temporal
box query, at first, a single geohash that represents the space (or a larger part of) is computed. If
the space contains more than 8 characters, we consider the represented geohash as an 8 character
string by pruning it. If fewer than 8 characters are resulted, wildcard character/s (?) are added

42

D3.3 Primitive Query Operators H2020-ICT-2017-1

at the end of the string so as to consist of 8 characters. At the second phase, the common part of
Unix timestamp of the lower and upper temporal bounds is found. Then, wildcard character/s
are added to the common part so as to form a string with 13 characters. The formed spatial and
temporal strings are concatenated with 5 wildcard characters which correspond to the random
string part of the row id. The formed string is given as an input to the fuzzy row filter which
fetches both the true-positive and the false-positive spatio-temporal points. Specifically, the filter
retrieves the rows that match with the given expression. Then, a refinement step takes place for
filtering out the points whose spatial and temporal part are not enclosed by the lower and upper
bounds of the box query.

Given a spatio-temporal cylinder or polyhedron query where its spatial extent is circle and
polygon respectively, the query is handled via its minimum bounding rectangle. This means that
the minimum bounding box of these queries is computed and performed with the aforementioned
procedure. At the refinement phase, the spatial extent of the initial query is taken into account
for determining the true-positive results.

The applied string scheme can also handle spatial queries. The same procedure takes place
for the spatial part of the row id. The temporal part is handled with a 13 wildcard characters
string. This means that the filter will not apply any constraint on the temporal part.

3.5.2 Related Module Technical Details

The noda-hbase module consists of the following concrete classes and abstract classes grouped
by packages (graphically illustrated in Figure 10).

• gr.ds.unipi.noda.api.hbase

– HBaseConnectionFactory – concrete class that extends NoSqlDbConnectionFactory
core abstract class so as to provide to the user of the API the query primitives and
the choice of closing the established database connection to HBase.

– HBaseConnectionManager – concrete class that extends NoSqlDbConnectionManager
core abstract class for managing the connections on HBase database. The class man-
ages the dictionary data structure which stores the HBase connections in <key, value>
form where key is a HBaseConnector object and value is Connection object offered by
the hbase-client native library.

– HBaseConnector – concrete class that implements the NoSqlDbConnector core in-
terface so as to be used in the HBaseConnectionManager class when checking the
existence of a connection to a HBase store. The class retains information related to
the connection such as IP addresses and credentials, used by its equals and hashCode
methods.

– HBaseOperators – concrete class that extends NoSqlDbOperators, offering the func-
tionality of query primitives for HBase.

43

D3.3 Primitive Query Operators H2020-ICT-2017-1

• gr.ds.unipi.noda.api.hbase.filterOperators.comparisonOperators

– HBaseComparisonOperatorFactory – concrete class that extends BaseComparisonOp-
eratorFactory core abstract class, acting as a facet of comparison operators over HBase
in order to be forwarded to the FilterOperators core concrete class.

– ComparisonOperator – abstract class that extends the ComparisonOperator core ab-
stract class, representing a comparison operator over HBase. It is extended by the
concrete classes of this package that represent a particular comparison operator.

– OperatorEqual – concrete class that extends ComparisonOperator abstract class, im-
plementing the equals conditional operator over HBase.

– OperatorGreaterThan – concrete class that extends ComparisonOperator abstract
class, implementing the greater than conditional operator over HBase.

– OperatorGreaterThanEqual – concrete class that extends ComparisonOperator ab-
stract class, implementing the greather than equal conditional operator over HBase.

– OperatorLessThan – concrete class that extends ComparisonOperator abstract class,
implementing the less than conditional operator over HBase.

– OperatorLessThanEqual – concrete class that extends ComparisonOperator abstract
class, implementing the less than equal conditional operator over HBase.

– OperatorNotEqual – concrete class that extends ComparisonOperator abstract class,
implementing the not equals conditional operator over HBase.

• gr.ds.unipi.noda.api.hbase.filterOperators.logicalOperators

– HBaseLogicalOperatorFactory – concrete class that extends BaseLogicalOperatorFac-
tory core abstract class, acting as a facet of logical operators over HBase in order to
be forwarded to the FilterOperators core concrete class.

– LogicalOperator – abstract class that extends the LogicalOperator core abstract class,
representing a logical operator over HBase. It is extended by the concrete classes of
this package that represent a particular logical operator.

– OperatorAnd – concrete class that extends LogicalOperator abstract class, implement-
ing the and logical operator over HBase.

– OperatorOr – concrete class that extends LogicalOperator abstract class, implement-
ing the or logical operator over HBase.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geographicalOperators

– HBaseGeographicalOperatorFactory – concrete class that extends BaseGeographical-
OperatorFactory core abstract class, acting as a facet of geographical operators over
HBase in order to be forwarded to the FilterOperators core concrete class.

44

D3.3 Primitive Query Operators H2020-ICT-2017-1

– GeographicalOperator – abstract class that extends the GeographicalOperator core
abstract class, representing a geographical operator over HBase. It is extended by the
concrete classes of this package that represent a particular geographical operator.

– OperatorInGeoRectangle – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial rectangle filter operator over HBase.

– OperatorInGeoCircle – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial circle filter operator over HBase.

– OperatorInGeoPolygon – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial polygon filter operator over HBase.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geographicalOperators
.customFilters

– CircleFilter – concrete class that extends the FilterBase class which is provided by
HBase for custom filtering. The class does spatial filtering given a circle and is used
in the refinement step when performing a spatial circle query.

– PolygonFilter – concrete class that extends the FilterBase class which is provided by
HBase for custom filtering. The class does spatial filtering given a polygon and is used
in the refinement step when performing a spatial polygon query.

– RectangleFilter – concrete class that extends the FilterBase class which is provided
by HBase for custom filtering. The class does spatial filtering given a rectangle and
is used in the refinement step when performing a spatial rectangle query.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geographicalOperators
.customFilters.generated

– CircleFilterProtos – generated class by the protocol buffer compiler so as to support
the customized filter of spatial circle.

– PolygonFilterProtos – generated class by the protocol buffer compiler so as to support
the customized filter of spatial polygon.

– RectangleFilterProtos – generated class by the protocol buffer compiler so as to sup-
port the customized filter of spatial rectangle.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geoTemporalOperators

– HBaseGeoTemporalOperatorFactory – concrete class that extends BaseGeoTemporal-
OperatorFactory core abstract class, acting as a facet of geotemporal operators over
HBase in order to be forwarded to the FilterOperators core concrete class.

– GeoTemporalOperator – abstract class that extends the GeoTemporalOperator core
abstract class, representing a geotemporal operator over HBase. It is extended by the
concrete classes of this package that represent a particular geotemporal operator.

45

D3.3 Primitive Query Operators H2020-ICT-2017-1

– OperatorInGeoTemporalRectangle – concrete class that extends GeographicalOperator
abstract class, implementing the geotemporal rectangle filter operator over HBase.

– OperatorInGeoTemporalCircle – concrete class that extends GeographicalOperator ab-
stract class, implementing the geotemporal circle filter operator over HBase.

– OperatorInGeoTemporalPolygon – concrete class that extends GeographicalOperator
abstract class, implementing the geotemporal polygon filter operator over HBase.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geoTemporalOperators
.customFilters

– CircleTemporalFilter – concrete class that extends the FilterBase class which is pro-
vided by HBase for custom filtering. The class does spatio-temporal filtering given a
circle and time bounds. It is used in the refinement step when performing a spatio-
temporal cylinder query.

– PolygonTemporalFilter – concrete class that extends the FilterBase class which is
provided by HBase for custom filtering. The class does spatio-temporal filtering given
a polygon and time bounds. It is used in the refinement step when performing a
spatio-temporal polyhedron query.

– RectangleTemporalFilter – concrete class that extends the FilterBase class which is
provided by HBase for custom filtering. The class does spatio-temporal filtering given
a rectangle and time bounds. It is used in the refinement step when performing a
spatio-temporal box query.

• gr.ds.unipi.noda.api.hbase.filterOperators.geoperators.geoTemporalOperators
.customFilters.generated

– CircleTemporalFilterProtos – generated class by the protocol buffer compiler so as to
support the customized filter of spatio-temporal cylinder.

– PolygonTemporalFilterProtos – generated class by the protocol buffer compiler so as
to support the customized filter of spatio-temporal polyhedron.

– RectangleTemporalFilterProtos – generated class by the protocol buffer compiler so as
to support the customized filter of spatio-temporal box.

• gr.ds.unipi.noda.api.hbase.aggregateOperators

– HBaseAggregateOperatorFactory – concrete class that extends BaseAggregateOpera-
torFactory core abstract class, acting as a facet of aggregate operators over HBase in
order to be forwarded to the AggregateOperators core concrete class. All of the meth-
ods in the HBaseAggregateOperatorFactory class return null, as aggregations are not
supported directly from HBase.

• gr.ds.unipi.noda.api.hbase.sortOperators

46

D3.3 Primitive Query Operators H2020-ICT-2017-1

– HBaseSortOperatorFactory – concrete class that extends BaseSortOperatorFactory
core abstract class, acting as a facet of sort operators over HBase in order to be
forwarded to the SortOperators core concrete class.

– SortOperator – abstract class that extends the SortOperator core abstract class, rep-
resenting a sort operator over HBase. It is extended by the concrete classes of this
package that represent a particular sort operator.

– OperatorAsc – concrete class that extends SortOperator abstract class, sorting the
records in ascending order by a column on HBase.

– OperatorDesc – concrete class that extends SortOperator abstract class, sorting the
records in descending order by a column on HBase.

47

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 10: UML class diagram of noda-hbase module

48

D3.3 Primitive Query Operators H2020-ICT-2017-1

3.6 Implementation for Redis

Redis is a key-value, main-memory, NoSQL store that supports many data types and structures,
including strings, lists, sets, and bit arrays. A key in Redis is binary-safe, meaning that we can
use any binary sequence, from a string to the content of a JPEG file. Also, an empty string is
regarded as a valid key. Also, Redis provides the option to store data on hard disk for persistence.

Redis supports sharding through Redis Cluster in which data is split among Redis instances
for holding a specific subset of key-values. Two types of partitioning are supported: hash-based
and range-based. It adopts the master-slave architecture, non-blocking synchronization and
automatic re-connection to the nodes in case of failover. Redis provides high availability via
Redis Sentinel which is a distributed system for managing the failover.

At the point of this writing, the implementation over Redis is based on the RediSearch
module which is a text search and secondary indexing engine on top of Redis. It does not use
Redis internal structure, but it uses its own data structures and algorithms offering advanced
search features. It can perform simple text search to complex structured queries, filtering by
numeric properties and geographical distances.

RediSearch supports text, numeric and geographical indexes. Specifically, for the geographical
fields, it uses sorted sets of Redis which are indexes by nature. Further indexes are created for
the field types which have been set.

3.6.1 Loading and Querying spatio-temporal data

In order to perform efficiently search operations, RediSearch should have pre-define the schema
of index which indicates how the records will be handled when added. Then, the records can be
added according to the schema definition and RedisSearch handles by its own how to store and
index every field by using the appropriate data structure. Also, RediSearch handles the data
distribution on the Redis Cluster.

RediSearch supports filtering on geospatial data which takes place on GEO fields. Redis
provides many commands related to geographical locations, but unlike the other available com-
mands, they do not operate on a specific data type. These commands use sorted sets as data type
under the hood. The applied technique that is used to fill the sorted set is based on geohashing,
which uses z-order space-filling curve. Geohashing is described in subsection 3.5.1 Specifically,
longitude and latitude are encoded so as to form a unique 52 bit integer number. The score of a
sorted set can represent a 52-bit integer without accuracy loss.

Given a circle and its radius, Redis carries out a geohash search of the cell which contains
its center and its 8 adjacent cells (9 cells totally). Practically, a range query is performed in
each cell. Next, the distance from the center of the circle to every entry is checked, so as to be
included or not in the query result.

RediSearch also supports numeric range queries for numeric data filtering. This takes place

49

D3.3 Primitive Query Operators H2020-ICT-2017-1

by setting the fields on the index as NUMERIC. The numeric values of the records for these
fields will be indexed and used for the result filtering of the query’s execution. In the current
version, sorted sets are used for the representation of numeric data. The bounds of the numeric
filters can be exclusive or inclusive.

3.6.2 Related Module Technical Details

The noda-redisearch module consists of the following concrete classes and abstract classes grouped
by packages (depicted in Figure 11).

• gr.ds.unipi.noda.api.redisearch

– RediSearchConnectionFactory – concrete class that extends NoSqlDbConnectionFac-
tory core abstract class so as to provide to the user of the API the query primitives
and the choice of closing the established database connection to RediSearch.

– RediSearchConnectionManager – concrete class that extends NoSqlDbConnection-
Manager core abstract class for managing the connections on RediSearch. The class
manages the dictionary data structure which stores the RediSearch connections in
<key, value> form where key is a RediSearchConnector object and value is Pool
object offered by the jredisearch native library.

– RediSearchConnector – concrete class that implements the NoSqlDbConnector core
interface so as to be used in the RediSearchConnectionManager class when checking
the existence of a connection to a RediSearch store. The class retains information
related to the connection such as IP addresses and credentials, used by its equals and
hashCode methods.

– RediSearchOperators – concrete class that extends NoSqlDbOperators, offering the
functionality of query primitives for RediSearch.

– RediSearchQueryHelper – concrete class that retains states for the rationale structure
and execution of the RediSearch query, based on the actions determined at RediS-
earchOperators.

• gr.ds.unipi.noda.api.redisearch.filterOperators

– RediSearchPostFilterOperator – interface that is implemented for handling the Re-
dis query against its filter commands. For instance, having set the primitives .fil-
ter(X).aggregate(Y).filter(U), X is equivalent to query, but U is a filter command
upon the aggregation.

• gr.ds.unipi.noda.api.redisearch.filterOperators.comparisonOperators

– RediSearchComparisonOperatorFactory – concrete class that extends BaseCompar-
isonOperatorFactory core abstract class, acting as a facet of comparison operators
over RediSearch in order to be forwarded to the FilterOperators core concrete class.

50

D3.3 Primitive Query Operators H2020-ICT-2017-1

– ComparisonOperator – abstract class that extends the ComparisonOperator core ab-
stract class, representing a comparison operator over RediSearch. It is extended by
the concrete classes of this package that represent a particular comparison operator.

– OperatorEqual – concrete class that extends ComparisonOperator abstract class, im-
plementing the equals conditional operator over RediSearch.

– OperatorGreaterThan – concrete class that extends ComparisonOperator abstract
class, implementing the greater than conditional operator over RediSearch.

– OperatorGreaterThanEqual – concrete class that extends ComparisonOperator ab-
stract class, implementing the greather than equal conditional operator over RediS-
earch.

– OperatorLessThan – concrete class that extends ComparisonOperator abstract class,
implementing the less than conditional operator over RediSearch.

– OperatorLessThanEqual – concrete class that extends ComparisonOperator abstract
class, implementing the less than equal conditional operator over RediSearch.

– OperatorNotEqual – concrete class that extends ComparisonOperator abstract class,
implementing the not equals conditional operator over RediSearch.

– RangeValue – concrete class for supporting numeric queries. It bypasses the cur-
rent bug of the native redisearch library (1.4.0 version) in the RangeValue class for
managing the double exponents.

• gr.ds.unipi.noda.api.redisearch.filterOperators.logicalOperators

– RediSearchLogicalOperatorFactory – concrete class that extends BaseLogicalOpera-
torFactory core abstract class, acting as a facet of logical operators over RediSearch
in order to be forwarded to the FilterOperators core concrete class.

– LogicalOperator – abstract class that extends the LogicalOperator core abstract class,
representing a logical operator over RediSearch. Extended by the concrete classes of
this package that represent a particular logical operator.

– OperatorAnd – concrete class that extends LogicalOperator abstract class, implement-
ing the and logical operator over RediSearch.

– OperatorOr – concrete class that extends LogicalOperator abstract class, implement-
ing the or logical operator over RediSearch.

• gr.ds.unipi.noda.api.redisearch.filterOperators.geoperators.geographicalOperators

– RediSearchGeographicalOperatorFactory – concrete class that extends BaseGeograph-
icalOperatorFactory core abstract class, acting as a facet of geographical operators
over RediSearch in order to be forwarded to the FilterOperators core concrete class.

51

D3.3 Primitive Query Operators H2020-ICT-2017-1

– RediSearchGeographicalOperator – interface which incorporates the ZRangeInfo as
the expression of an operator. It is implemented by the OperatorInGeoRectangle
class. By default, Node object is returned from the getOperatorExpression method
of the extended GeographicalOperator abstract class. This is not supported by the
OperatorInGeoRectangle class.

– GeographicalOperator – abstract class that extends the GeographicalOperator core
abstract class, representing a geographical operator over RediSearch. Extended by
the concrete classes of this package that represent a particular geographical operator.

– OperatorInGeoRectangle – concrete class that extends GeographicalOperator abstract
class and implements the RediSearchGeographicalOperator interface. It performs the
geospatial rectangle filter operator over RediSearch.

– OperatorInGeoCircle – concrete class that extends GeographicalOperator abstract
class, implementing the geospatial circle filter operator over RediSearch.

– OperatorGeoNearestNeighbors – concrete class that extends GeographicalOperator ab-
stract class, implementing the geospatial nearest neighboors operator over RediSearch.

– ZRangeInfo – concrete class that retains the required information needed for the
Zrange call for spatial querying.

• gr.ds.unipi.noda.api.redisearch.aggregateOperators

– RediSearchAggregateOperatorFactory – concrete class that extends BaseAggregate-
OperatorFactory core abstract class, acting as a facet of aggregate operators over
RediSearch in order to be forwarded to the AggregateOperators core concrete class.

– AggregateOperator – abstract class that extends the AggregateOperator core abstract
class, representing an aggregate operator over RediSearch. It is extended by the
concrete classes of this package that represent a particular aggregate operator.

– OperatorAvg – concrete class that extends AggregateOperator abstract class, calcu-
lating the average of a set of numeric values that may result from applying a specified
group expression over RediSearch.

– OperatorMin – concrete class that extends AggregateOperator abstract class, calcu-
lating the minimum value of a set of numeric values that may result from applying a
specified group expression over RediSearch.

– OperatorMax – concrete class that extends AggregateOperator abstract class, calcu-
lating the maximum value of a set of numeric values that may result from applying a
specified group expression over RediSearch.

– OperatorSum – concrete class that extends AggregateOperator abstract class, cal-
culating the sum value of a set of numeric values that may result from applying a
specified group expression over RediSearch.

52

D3.3 Primitive Query Operators H2020-ICT-2017-1

– OperatorCount – concrete class that extends AggregateOperator abstract class, calcu-
lating the number of records that may result from applying a specified group expression
over RediSearch.

– OperatorCountNonNull – concrete class that extends AggregateOperator abstract
class, calculating the number of non-null values in a set that may result from ap-
plying a specified group expression over RediSearch.

• gr.ds.unipi.noda.api.redisearch.sortOperators

– RediSearchSortOperatorFactory – concrete class that extends BaseSortOperatorFac-
tory core abstract class, acting as a facet of sort operators over RediSearch in order
to be forwarded to the SortOperators core concrete class.

– SortOperator – abstract class that extends the SortOperator core abstract class, rep-
resenting a sort operator upon RediSearch store. It is extended by the concrete classes
of this package that represent a particular sort operator.

– OperatorAsc – concrete class that extends SortOperator abstract class, sorting the
records in ascending order by a column on RediSearch.

– OperatorDesc – concrete class that extends SortOperator abstract class, sorting the
records in descending order by a column on RediSearch.

53

D3.3 Primitive Query Operators H2020-ICT-2017-1

Figure 11: UML class diagram of noda-redisearch module

54

D3.3 Primitive Query Operators H2020-ICT-2017-1

4 Developer’s guide – Practical Examples of NoDA

In order to exploit the features of NoDA for accessing data, at first a connection to the database
should be defined with its required arguments. Its generic form is shown in Listing 4.1 YYY()
method represents a NoSQL database and Builder(...) accepts the required parameters for es-
tablishing a connection. By calling the Builder() method, other methods can be called, each
one declaring an extra feature of a connection may have (FEATURE1(...) and FEATURE2()
methods). The features are declared optionally as they are not required for the connection es-
tablishment. The build() method is called last for completing the declaration of the information
related to the connection. The build() method returns a NoSqlDbSystem object. Listings 4.2,
4.3 and 4.4 show concrete connection declaration upon MongoDB, HBase and Redis stores re-
spectively. Listing 4.5 shows an instance of combining a connection declaration to MongoDB
store with a spark session. This allows to fetch queries’ results in dataframe form, from which
we can handle data results in distributed environment.

Listing 4.1: Generic form of declaring and closing a NoSQL database connection

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2

3 public class GenericConnectionDeclaration {

4 public static void main(String args[]){

5

6 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.YYY().Builder().FEATURE1()

7 .FEATURE2().build();

8

9 //do operations ...

10

11 noSqlDbSystem.close();

12 }

13 }

Listing 4.2: Connection declaration on MongoDB Store

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2 import com.mongodb.MongoClientOptions;

3

4 public class MongoDBConnectionDeclaration {

5 public static void main(String args[]){

6

7 MongoClientOptions mco = MongoClientOptions.builder().sslEnabled(true).build();

8

9 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB()

10 .Builder("username","password","database")

11 .host("127.0.0.1").port(9000).mongoClientOptions(mco).build();

12 }

13 }

55

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 4.3: Connection declaration on HBase Store

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2

3 public class HBaseConnectionDeclaration {

4 public static void main(String args[]){

5

6 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.HBase().Builder()

7 .host("127.0.0.1").port(9000)

8 .addProperty("hbase.rpc.timeout","60000").build();

9 }

10 }

Listing 4.4: Connection declaration on Redis Store, using RediSearch

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2

3 public class RediSearchConnectionDeclaration {

4

5 public static void main(String args[]){

6

7 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.RediSearch().Builder("masterName")

8 .host("127.0.0.1").port(9000).connectionTimeout(60000).build();

9 }

10 }

Listing 4.5: Declaring and closing a connection on MongoDB Store for data access, combining
a Spark session

1 import gr.ds.unipi.noda.api.client.NoSqlDbSystem;

2 import com.mongodb.MongoClientOptions;

3 import org.apache.spark.sql.SparkSession;

4

5 public class MongoDBDataAccessWithSparkSession {

6 public static void main(String args[]){

7

8 SparkSession session = SparkSession.builder().master("local")

9 .appName("MongoSparkConnectorIntro").getOrCreate();

10

11 MongoClientOptions mco = MongoClientOptions.builder().sslEnabled(true).build();

12

13 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB()

14 .Builder("username","password","database").host("127.0.0.1")

15 .port(9000).mongoClientOptions(mco).sparkSession(session).build();

16

17 //do operations ...

18

19 noSqlDbSystem.close();

20 }

21 }

The host and port methods are not required for being defined. If they are not set, localhost
string value will be used for the host and port will use the storage’s default port when running
as a standalone instance.

The Builder methods are unique for each store, as a NoSQL database may not require some

56

D3.3 Primitive Query Operators H2020-ICT-2017-1

parameters that another database requires for connection establishment. The same applies for
the feature methods. These were designed by taking account each store’s peculiarities. For
instance, HBase uses properties for declaring parameters where other databases do not declare
parameters in such way. We have made an effort towards grouping some feature methods that
have exact the same meaning for the databases (host, port and spark methods).

The usage of the spark method which requires a spark session as an argument, enables the
query result to be fetched as a Dataframe (toDataframe query primitive).

Having set the information for connection establishment, we can proceed to operate on the
data stored in the NoSQL database by using either the programming interface (Section 4.1) or
the SQL interface (Section 4.2).

4.1 Use of the Programming Interface

Below are following 5 practical examples of using the programming interface for accessing spatio-
temporal data.

Listing 4.6 shows the instance of getting in dataframe form through the programming inter-
face, the number of spatial points inside a circle. The circle is defined by its coordinates and
radius in Km.

Listing 4.6: Count the number of spatial points in a circle

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.Dataset;

4 import org.apache.spark.sql.Row;

5 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.*;

6 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.*;

7

8 public class DataOperationsByUsingTheProgrammingInterface {

9 public static void main(NoSqlDbOperators noSqlDbOp) {

10

11 //NoSQL connection definition with spark session ...

12

13 NoSqlDbOperators noSqlDbOperators = noSqlDbSystem.operateOn("geoPoints");

14

15 Coordinates coordinates = Coordinates.newCoordinates(23.7533, 37.9801);

16

17 Dataset<Row> dataset = noSqlDbOperators

18 .filter(inGeoCircleKm("location", coordinates, 1))

19 .aggregate(count()).toDataframe();

20

21 //close connection and spark session ...

22 }

23 }

Listing 4.7 shows the instance of getting in dataframe form through the programming in-

57

D3.3 Primitive Query Operators H2020-ICT-2017-1

terface, the number of GPS traces that were recorded inside a spatio-temporal box for each
vehicle.

Listing 4.7: Find for every vehicle that passed from a spatio-temporal box, the number of GPS
traces

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.Dataset;

4 import org.apache.spark.sql.Row;

5 import java.text.ParseException;

6 import java.text.SimpleDateFormat;

7 import java.util.Date;

8 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.count;

9 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.inGeoTemporalRectangle;

10

11 public class DataOperationsByUsingTheProgrammingInterface {

12 public static void main(String args[]) throws ParseException {

13

14 //NoSQL connection definition with spark session ...

15

16 NoSqlDbOperators noSqlDbOperators = noSqlDbSystem.operateOn("geoPoints");

17

18 Coordinates lowerCoordinates = Coordinates.newCoordinates(23.7533, 37.9801);

19 Coordinates upperCoordinates = Coordinates.newCoordinates(23.7598, 37.9910);

20

21 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");

22

23 Date lowerDate = simpleDateFormat.parse("1/3/2020 00:00:00");

24 Date upperDate = simpleDateFormat.parse("1/3/2020 23:59:50");

25

26 Dataset<Row> dataset = noSqlDbOperators

27 .filter(inGeoTemporalRectangle("location", lowerCoordinates, upperCoordinates,

28 "date", lowerDate, upperDate))

29 .groupBy("vehicle_id").aggregate(count()).toDataframe();

30

31 //close connection and spark session ...

32 }

33 }

Listing 4.8 shows the instance of getting in dataframe form through the programming inter-
face, the number of vehicles that passed from a spatio-temporal cylinder.

58

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 4.8: Find the number of vehicles that passed from a spatio-temporal cylinder

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.Dataset;

4 import org.apache.spark.sql.Row;

5 import java.text.ParseException;

6 import java.text.SimpleDateFormat;

7 import java.util.Date;

8 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.countDistinct;

9 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.inGeoTemporalCircleKm;

10

11 public class DataOperationsByUsingTheProgrammingInterface {

12 public static void main(String args[]) throws ParseException {

13

14 //NoSQL connection definition with spark session ...

15

16 NoSqlDbOperators noSqlDbOperators = noSqlDbSystem.operateOn("geoPoints");

17

18 Coordinates coordinates = Coordinates.newCoordinates(23.7533, 37.9801);

19

20 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");

21

22 Date lowerDate = simpleDateFormat.parse("1/3/2020 00:00:00");

23 Date upperDate = simpleDateFormat.parse("1/3/2020 23:59:50");

24

25 Dataset<Row> dataset = noSqlDbOperators

26 .filter(inGeoTemporalCircleKm("location", coordinates, 1,

27 "date", lowerDate, upperDate))

28 .aggregate(countDistinct("vehicle_id")).toDataframe();

29

30 //close connection and spark session ...

31 }

32 }

Listing 4.9 shows the instance of getting in dataframe form through the programming inter-
face, the start, stop time and the number of the GPS traces of a specific trajectory.

59

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 4.9: Find for a specific trajectory, its start, stop time and its number of GPS traces

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.count;

5 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.max;

6 import static gr.ds.unipi.noda.api.core.operators.AggregateOperators.min;

7 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.eq;

8

9 public class DataOperationsByUsingTheProgrammingInterface {

10 public static void main(String args[]) {

11

12 //NoSQL connection definition with spark session ...

13

14 NoSqlDbOperators noSqlDbOperators = noSqlDbSystem.operateOn("geoPoints");

15

16 Dataset<Row> dataset = noSqlDbOperators

17 .filter(eq("trajectory_id","65p19"))

18 .aggregate(min("date"), max("date"),count()).toDataframe();

19

20 //close connection and spark session ...

21 }

22 }

Listing 4.10 shows the instance of getting in dataframe form through the programming inter-
face, the id of the trajectories in descending order, after applying a nearest neighbors filter on
the GPS traces.

Listing 4.10: Get at most the 20 nearest trajectories that passed from a point, in descending
order

1 import gr.ds.unipi.noda.api.core.nosqldb.NoSqlDbOperators;

2 import gr.ds.unipi.noda.api.core.operators.filterOperators.geoperators.Coordinates;

3 import org.apache.spark.sql.Dataset;

4 import org.apache.spark.sql.Row;

5 import java.text.ParseException;

6 import static gr.ds.unipi.noda.api.core.operators.FilterOperators.geoNearestNeighbors;

7 import static gr.ds.unipi.noda.api.core.operators.SortOperators.desc;

8

9 public class DataOperationsByUsingTheProgrammingInterface {

10 public static void main(String args[]) {

11

12 //NoSQL connection definition with spark session ...

13

14 NoSqlDbOperators noSqlDbOperators = noSqlDbSystem.operateOn("geoPoints");

15

16 Coordinates coordinates = Coordinates.newCoordinates(23.7533, 37.9801);

17

18 Dataset<Row> dataset = noSqlDbOperators

19 .filter(geoNearestNeighbors("location", coordinates, 20))

20 .groupBy("trajectory_id").sort(desc("trajectory_id")).toDataframe();

21

22 //close connection and spark session ...

23 }

24 }

60

D3.3 Primitive Query Operators H2020-ICT-2017-1

4.2 Use of the SQL Interface

Below are following 5 practical examples of using the SQL interface for accessing spatio-temporal
data. The instances correspond to the examples of 4.1 subsection.

Listing 4.11 shows the instance of getting in Dataframe form through the SQL interface, the
number of spatial points inside a circle. The circle is defined by its coordinates and radius in
Km.

Listing 4.11: Count the number of spatial points in a circle

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsByUsingTheSqlInterface {

6 public static void main(String args[]) {

7

8 //NoSQL connection definition with spark session ...

9

10 String sqlStatement = "SELECT COUNT(*) FROM geoPoints " +

11 "WHERE GEO_CIRCLE_KM(location, (23.7533, 37.9801), 1)";

12

13 NoSqlDbSqlStatement noSqlDbStmt = noSqlDbSystem.sql(sqlStatement);

14

15 Dataset<Row> dataset = noSqlDbStmt.toDataframe();

16

17 //close connection and spark session ...

18 }

19 }

Listing 4.12 shows the instance of getting in Dataframe form through the SQL interface, the
number of GPS traces that were recorded inside a spatio-temporal box for each vehicle.

61

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 4.12: Find for every vehicle that passed from a spatio-temporal box, the number of GPS
traces

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsByUsingTheSqlInterface {

6 public static void main(String args[]) {

7

8 //NoSQL connection definition with spark session ...

9

10 String sqlStatement = "SELECT COUNT(*) FROM geoPoints " +

11 "WHERE GEO_TEMPORAL_RECTANGLE(location, [(23.7533, 37.9801), " +

12 "(23.7598, 37.9910)], date, '1/3/2020 00:00:00', '1/3/2020 23:59:50') " +

13 "GROUP BY vehicle_id";

14

15 NoSqlDbSqlStatement noSqlDbStmt = noSqlDbSystem.sql(sqlStatement);

16

17 Dataset<Row> dataset = noSqlDbStmt.toDataframe();

18

19 //close connection and spark session ...

20 }

21 }

Listing 4.13 shows the instance of getting in Dataframe form through the SQL interface, the
number of vehicles that passed from a spatio-temporal cylinder.

Listing 4.13: Find the number of vehicles that passed from a spatio-temporal cylinder

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsByUsingTheSqlInterface {

6 public static void main(String args[]) {

7

8 //NoSQL connection definition with spark session ...

9

10 String sqlStatement = "SELECT COUNT(DISTINCT vehicle_id) FROM geoPoints " +

11 "WHERE GEO_TEMPORAL_CIRCLEKM(location, (23.7533, 37.9801), 1, " +

12 "date, '1/3/2020 00:00:00', '1/3/2020 23:59:50')";

13

14 NoSqlDbSqlStatement noSqlDbStmt = noSqlDbSystem.sql(sqlStatement);

15

16 Dataset<Row> dataset = noSqlDbStmt.toDataframe();

17

18 //close connection and spark session ...

19 }

20 }

Listing 4.14 shows the instance of getting in Dataframe form through the SQL interface, the
start, stop time and the number of the GPS traces of a specific trajectory.

62

D3.3 Primitive Query Operators H2020-ICT-2017-1

Listing 4.14: Find for a specific trajectory, its start, stop time and its number of GPS traces

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsByUsingTheSqlInterface {

6 public static void main(String args[]) {

7

8 //NoSQL connection definition with spark session ...

9

10 String sqlStatement = "SELECT MIN(date), MAX(date), COUNT(*) FROM geoPoints " +

11 "WHERE trajectory_id = '65p19'";

12

13 NoSqlDbSqlStatement noSqlDbStmt = noSqlDbSystem.sql(sqlStatement);

14

15 Dataset<Row> dataset = noSqlDbStmt.toDataframe();

16

17 //close connection and spark session ...

18 }

19 }

Listing 4.15 shows the instance of getting in dataframe form through the programming inter-
face, the id of the trajectories in descending order, after applying a nearest neighbors filter on
the GPS traces.

Listing 4.15: Get at most the 20 nearest trajectories that passed from a point, in descending
order

1 import gr.ds.unipi.noda.api.client.sql.NoSqlDbSqlStatement;

2 import org.apache.spark.sql.Dataset;

3 import org.apache.spark.sql.Row;

4

5 public class DataOperationsByUsingTheSqlInterface {

6 public static void main(String args[]) {

7

8 //NoSQL connection definition with spark session ...

9

10 String sqlStatement = "SELECT trajectory_id FROM geoPoints " +

11 "WHERE GEO_NEAREST_NEIGHBORS(location, (23.7533, 37.9801), 20) "+

12 "GROUP BY trajectory_id ORDER BY trajectory_id DESC";

13

14 NoSqlDbSqlStatement noSqlDbStmt = noSqlDbSystem.sql(sqlStatement);

15

16 Dataset<Row> dataset = noSqlDbStmt.toDataframe();

17

18 //close connection and spark session ...

19 }

20 }

63

D3.3 Primitive Query Operators H2020-ICT-2017-1

5 Technical Description of Complex Query Operators

As explained in the previous sections, NoDA offers a unified layer for data access operators to
NoSQL stores, implemented over different NoSQL stores (MongoDB, HBase, Redis), as well as
a declarative, SQL-like interface. Essentially, this comprises a set of primitive query operators
that facilitate seamless data access to scalable NoSQL stores in a unified way.

However, there exist complex query operators that their functionality as a whole cannot be
pushed-down to a NoSQL store in an efficient way. An example of such a complex query is
the distributed sub-trajectory join (DTJ) query, which is a significant operation in mobility data
analytics and the cornerstone of various methods that aim to extract knowledge out of mobility
data.

In more detail, concrete applications from the Track&Know Pilots that can benefit from this
work include: sub-trajectory clustering (reported in Deliverable D4.1), computing representative
movements in Individual Mobility Networks (IMNs) (reported in Deliverable D4.2), trip matching
for carpooling (Pilot 1), and delivery optimization (Pilots 2 and 3).

5.1 Distributed Sub-trajectory Join

The so-called trajectory join problem, aims to find all pairs of “similar” (i.e. nearby in space-
time) trajectories in a dataset [6, 9, 13, 43]. An even more interesting and challenging problem
is the sub-trajectory join query [4], where, for each pair of trajectories, we want to retrieve all
the “portions” of trajectories that are “similar”. However, the sub-trajectory join is a processing-
intensive operation. Centralized algorithms do not scale with the size of today’s trajectory data.
Moreover, such a complex query operator cannot be pushed down as a whole to a NoSQL store in
an efficient way, thus custom parallel and distributed algorithms are necessary in order to provide
efficient processing of sub-trajectory join, an issue largely overlooked in the related research.

Several modern applications that manage trajectory data could benefit from such an oper-
ation. For instance, in the urban traffic domain, carpooling is becoming increasingly popular.
More concretely, consider a mobile application which tries to match users that can share a ride
based on their past movements. Here, given a set of trajectories we want to find all the pairs
of users that can share a ride for a portion of their everyday routes without significantly de-
viating (spatially and temporally) from their daily routine (i.e. retrieve all pairs of maximal
sub-trajectories that move close in space and time). Another interesting scenario concerns the
identification of suspicious movement by a governmental security agency. For instance, given a
set of trajectories that depict the movement of suspicious individuals, we would like to retrieve
all the pairs of moving objects that move “close” to each other for more than a threshold (moving

64

D3.3 Primitive Query Operators H2020-ICT-2017-1

together for small periods of time could be considered as coincidental) as candidates for illegal
activity. Moreover, such a query is in fact the building block for a number of operations than
aim to identify mobility patterns, such as co-movement patterns (e.g. flocks [25], convoys [27],
swarms [29]). An even more challenging problem is that of sub-trajectory clustering [33, 1]. An
interesting application scenario of sub-trajectory clustering is network discovery, where given a
set of trajectories (e.g from the maritime or the aviation domain) we want to identify the un-
derlying network of movement by grouping sub-trajectories that move “close” to each other and
use cluster representatives/medoids as network edges. One of the main goals of sub-trajectory
clustering is to segment trajectories to sub-trajectories. Finally, trajectory segmentation tech-
niques [31, 33], can directly benefit from the sub-trajectory join query since their input, for each
trajectory, is the number of objects that were located close to it at any given time. However, the
bottleneck in all these applications is the underlying processing cost of the join operation, which
calls for parallel and distributed solutions that scale beyond the limitations of a single machine.

≥
 δ
t

εsp

ε t

t

r s

r1

r2

r3

r4

r5

r6

r7

r8

r9
r10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10
t

t1

t2

t3

t4

t5

t6

t7

t8

εsp

ε t

t

r s

r1

r2

r3

r4

r5

r6

r7

r8

r9
r10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

εsp

ε t

≥
 δ
t

t

t1

t2

t3

t4

t5

t6

t7

t8

Figure 12: (a) A pair of maximally “matching” sub-trajectories and (b) a breaking point r1 and
a non-joining point s5 w.r.t. r.

Inspired by the above application scenarios, the problem that we address in this Section is as
follows: given two sets of trajectories (or a single set and its mirror in the case of self-join), identify
all pairs of maximal “portions” of trajectories (or else, sub-trajectories) that move close in time
and space w.r.t a spatial threshold εsp and a temporal tolerance εt, for at least some time duration
δt. To illustrate this informal definition, as depicted in Figure 12(a), given two trajectories r and
s, the pair of their maximal matching “portions” is ({r4, r5, r6, r7, r8}, {s3, s4, s5, s6, s7}). Each

65

D3.3 Primitive Query Operators H2020-ICT-2017-1

point of a trajectory defines a spatio-temporal ’neighborhood’ area around it, a cylinder of radius
εsp and height εt. In order for a pair of sub-trajectories to be considered “matching”, each point of
a sub-trajectory must have at least one point of the other sub-trajectory in its “neighborhood”,
thus making the result symmetrical. A pair of matching sub-trajectories is maximal if there
exists no superset of either sub-trajectories that can replace them and the pair still qualifies as
a “matching” pair.

There have been some efforts to tackle variations of this problem in a centralized way [4, 6, 9].
However, these solutions discover pairs of entire trajectories and cannot identify matching sub-
trajectories. In [5], all pairs of “matching” (w.r.t a spatial threshold) sub-trajectories of exactly
δt duration are retrieved in contrast with the problem addressed in this Section, where the goal
is to identify maximally “matching” sub-trajectories, which is vital for exploiting the output
in subsequent steps, e.g. the mining operations mentioned above. Moreover, applying these
centralized solutions to a parallel and distributed environment is not straightforward and is
often impossible if radical changes to the methods/algorithms do not take place, since there are
several non-trivial issues that arise. For instance, how to partition the data in such a way so
that each partition can be processed independently and be of even size.

In a recent effort, in [37] the authors try to tackle the problem of trajectory similarity join in
spatial networks in parallel. The solution proposed in [37] handles each trajectory separately and
all the data have to be replicated for each trajectory and, consequently, to each node. Due to this
fact, such a solution cannot scale to terabytes of data, thus making it inapplicable to Big Data.
Furthermore, such an approach assumes that the underlying network is known in advance, hence
it cannot support datasets of moving objects that move freely in space (e.g. from the maritime or
the aviation domain). As a result, a scenario where the goal is to identify the underlying network
cannot be supported. Finally, the output of [37] is pairs of trajectories and not sub-trajectories,
which is significantly different than the problem addressed in this Section. More recently, in [38]
the authors try to tackle the problem of trajectory similarity join. Specifically, given two sets of
trajectories, a similarity function (e.g. DTW) and a similarity threshold, they aim to identify all
pairs of trajectories that exceed this similarity threshold. Again, the problem addressed in [38] is
to retrieve pairs of trajectories in contrast with the problem that we try to tackle in this Section,
which is to retrieve all pairs of “maximally matching” sub-trajectories.

It is straightforward to claim that an integral part of any algorithm that tries to address the
sub-trajectory join query is to identify all pairs of points that move “close enough” in time and
space w.r.t a spatial threshold εsp and a temporal tolerance εt, e.g. r4 and s3 in Figure 12(a). In
that sense, another line of research that is closely related to our problem is that of MapReduce-
based spatial [49, 2, 16] and multidimensional joins [41, 30, 22], where the goal is to identify
such points. A generic solution which could form the basis for any MapReduce-based spatial (or
spatiotemporal) join algorithm is presented in [49], where the input data are partitioned into
small, disjoint tiles at Map stage and get joined at the Reduce stage by performing a plane sweep
algorithm along with a duplication avoidance technique. However, all of the above approaches try

66

D3.3 Primitive Query Operators H2020-ICT-2017-1

to solve a problem that is significantly different from ours since our problem is not to join spatial
or multidimensional objects but identify all pairs of “maximally matching” sub-trajectories.

In this Section, we provide efficient solutions for the Distributed Sub-trajectory Join processing
problem, as it is formally defined in Section 5.2. To the best of our knowledge, this problem has
not been addressed in the literature yet. Our main contributions are the following:

• We formally define the problem of Distributed Sub-trajectory Join processing, investigate
its main properties, and discuss its main challenges.

• We present a well-designed algorithm, called DTJb, that solves the problem of Distributed
Sub-trajectory Join processing by employing two MapReduce phases.

• We propose an improvement of DTJb, termed DTJr , which is equipped with a reparti-
tioning mechanism that achieves load balancing and collocation of temporally adjacent
data.

• To boost the performance of query processing even further, we introduce DTJi , which
extends DTJr by exploiting an indexing scheme that speeds up the computation of the
join.

• We compare with an appropriately modified state of the art MapReduce spatial join algo-
rithm and show that our solution performs several times better.

• We study the performance of the proposed algorithms by using, to the best of our knowl-
edge, the largest real trajectory dataset (56GB) used before in the relevant literature, thus
demonstrating the scalability of our algorithms.

The rest of the Section is organized as follows. In Section 5.2 we introduce the problem. In
Section 5.3, we present DTJb. Subsequently, in Section 5.4 we propose DTJr that utilizes a
preprocessing step. In Section 5.5, we introduce DTJi that boosts the performance of the join
processing. In Section 5.6, we provide our experimental study.

5.2 Problem Statement

Given a set R of trajectories moving in the xy-plane, a trajectory r ∈ R is a sequence of
timestamped locations {r1, . . . , rN}. Each ri = (xi, yi, ti) represents the i-th sampled point,
i ∈ 1, . . . , N of trajectory r, where N denotes the length of r (i.e. the number of points it consists
of). The pair (xi, yi) and ti denote the 2D location in the xy-plane and the time coordinate of
point ri respectively. A sub-trajectory ri,j is a subsequence {ri, . . . , rj} of r which represents the
movement of the object between ti and tj where i < j.

Given a pair (r, s) of trajectories (the same holds for sub-trajectories) with r ∈ R and s ∈ S,
the common lifespan wr,s is defined as the time interval [max(r1.t, s1.t),min(rN .t, sM .t)], where

67

D3.3 Primitive Query Operators H2020-ICT-2017-1

r1 (s1) is the first sample of r (s, respectively) and rN (sM) is the last sample of r (s, respectively).
The duration of the common lifespan wr,s is ∆wr,s = min(rN .t, sM .t) - max(r1.t, s1.t)

Further, let DistS(ri, sj) denote the spatial distance between two points ri, sj , which is
defined as the Euclidean distance, even though other distance functions are also applicable.
Also, let DistT (ri, sj) denote the temporal distance, defined as |ri.t− sj .t|.

Definition 1 (Matching sub-trajectories) Given a spatial threshold εsp, a temporal toler-
ance εt and a time duration δt, a “match” between a pair of sub-trajectories (r′, s′) occurs iff
∆wr′,s′ ≥ δt − 2εt, and ∀r′i ∈ r′ there exists at least one s′j ∈ s′ so that DistS(r′i, s

′
j) ≤ εsp

and DistT (r′i, s
′
j) ≤ εt, and ∀s′j there exists at least one r′i so that DistS(s′j , r

′
i) ≤ εsp and

DistT (s′j , r
′
i) ≤ εt.

Definition 2 (Maximally matching sub-trajectories) Given a pair of “matching” sub-trajectories
(r′, s′) which belong to trajectories r, s respectively, this pair is considered a “maximal match” iff
@ superset r′′ of r′ or s′′ of s′ where the pair (r′′, s′) or (r′, s′′) or (r′′, s′′) would be “matching”.

At this point, we should clarify that two trajectories may have more than one “maximal
matches” (i.e. pairs of sub-trajectories). Having provided the above background definitions, we
can define the sub-trajectory join query between two sets of trajectories.

Definition 3 (sub-trajectory join) Given two sets of trajectories R and S, a spatial threshold
εsp, a temporal tolerance εt and a time duration δt, the sub-trajectory join query searches for all
pairs (r′, s′), r′ ∈ r ∈ R and s′ ∈ s ∈ S, which are “maximally matching” sub-trajectories.

5.2.1 A Closer Look at the Sub-trajectory Join Problem

An integral part of any algorithm addressing the sub-trajectory join query, as defined in Defi-
nition 3 above, is to identify all pairs of joining points (ri,sj), where ri ∈ r and sj ∈ s, which
satisfy the following property: DistS(ri, sj) ≤ εsp and DistT (ri, sj) ≤ εt. In fact, the set of
joining points is the outcome of the inner join R ./ S, where the evaluated join predicates are
the ones mentioned above. However, as it will be explained next, these pairs of points do not
suffice to return the correct query result.

Let A denote the class of correct algorithms for the sub-trajectory join problem. A naive
algorithm A ∈ A would require the Cartesian product R × S to produce the correct result. We
claim that R × S can be represented by three sets of points, the set of joining points (JP), the
breaking points (BP) and the non-joining points (NJP). Formally, R × S = JP ∪BP ∪NJP .
The definitions of these sets follow, and the discussion is aided by Figure 12(b), which is a
variation of Figure 12(a) in order to emphasize the distinction between JPs, BPs and NJPs.

The first set of points that needs to be identified, besides JP , contains all points ri ∈ r∀r ∈ R
that do not “match” with any other point in S. We call such points as breaking points.

68

D3.3 Primitive Query Operators H2020-ICT-2017-1

Definition 4 (Breaking points) A point ri ∈ r ∈ R is a breaking point iff it is not a joining
point with any other point sj ∈ S:

@sj ∈ S: DistS(ri, sj) ≤ εsp ∧ DistT (ri, sj) ≤ εt.

As it will be shown later, the lack of information about BPs can make an algorithm A ∈ A
to falsely identify a pair of sub-trajectories as “matching”. The set of BP along with the set of
JP is actually the outcome of the full outer join of R and S. Figure 12(b) depicts the case where
r1 is a breaking point of r (r2, r3 and r10 are also breaking points), since it does not “match”
with any other point of any trajectory. Obviously, breaking points are never reported as part of
the answer set and the portion of r that could possibly contribute to the result is sub-trajectory
r4,9.

The last set of points that is necessary to be identified consists of the pairs of points that do
not “match”, coined non-joining points, since some of them might indicate the start or the end
of “maximally matching” sub-trajectories.

Definition 5 (Non-joining points) A point ri ∈ r ∈ R is a non-joining point w.r.t. sj ∈ s ∈ S
iff: (a) ri and sj are not breaking points, and (b) ri is not a joining point with sj ∈ S:

ri, sj /∈ BP ∧ (DistS(ri, sj) > εsp ∨ DistT (ri, sj) > εt).

This case is illustrated in Figure 12(b), where r5 is a non-joining point w.r.t. s5.
Actually, if we remove condition (a) from Definition 5 then it is obvious that a breaking point

ri is a special case of non-joining point where ri ∈ R is a non-joining point with every other
point ∈ S. However, we differentiate breaking points from non-joining points so as to reduce
the amount of information that needs to be kept, i.e. instead of keeping multiple non-joining
points we only keep one breaking point. In the section that follows, we investigate the theoretical
properties of an efficient algorithm in class A.

5.2.2 Properties of Sub-trajectory Join

In this section, we provide the theoretical properties for designing efficient algorithms for the
sub-trajectory join problem. The properties shown below essentially determine which pairs of
points from the sets BP and NJP are necessary for a correct algorithm in class A.

Lemma 1 The set of breaking points is necessary in order to produce the correct result set for
the sub-trajectory Join problem.

This result indicates that breaking points cannot be ignored by an algorithm, without compro-
mising the correctness of the result. The remaining question is whether all non-joining points are
also necessary. In the following, we define a subset of non-joining points points sNJP ⊆ NJP ,
and show that this subset is actually necessary.

Definition 6 (Subset sNJP of non-joining points) A non-joining point sj ∈ S w.r.t. a
point ri ∈ R belongs to sNJP , if at least one of its adjacent points sj−1 or sj+1 is a joining

69

D3.3 Primitive Query Operators H2020-ICT-2017-1

point with any point rp ∈ r, with p 6= i and @ a point rq, with q 6= i, such that DistT (rq, sj) ≤
DistT (ri, sj).

Returning to the example of Figure 12(b), s5 does not “match” with any point in r, even
though all points of r4,8 “match” with a point in s3,7. Again, failure to identify pairs of points
such as (s5, r6) would result in erroneously identifying larger “matching” sub-trajectories.

Lemma 2 The set sNJP of pairs of non-joining points is necessary in order to produce the
correct result set for the sub-trajectory Join problem.

In summary, our main finding is that a typical join algorithm that identifies only the set of
JP is not enough in order to address the sub-trajectory join problem. Additionally to the set
of JP , an algorithm needs to identify both the set of BP and the subset sNJP during the join
processing, in order to ensure correctness.

Distributed Sub-trajectory Join Given two sets R and S of trajectories, the typical ap-
proach for parallel join processing consists of two main phases: (a) data repartitioning, in order
to create pairs of partitions Ri ⊂ R and Sj ⊂ S, such that part of the join can be processed
using only Ri and Sj , and (b) join processing, where a join algorithm is performed on partitions
Ri and Sj .

Problem 1 (Distributed Sub-trajectory Join) Given two distributed sets of trajectories,
R = ∪Ri and S = ∪Sj, compute the sub-trajectory join (Definitition. 3) in a parallel manner.

In this setting, the main challenges are the following: (a) ensure that the created partitions
are sufficient to produce parts of the total join without additional data, (b) generate even-
sized partitions in order to balance the load fairly to multiple nodes, (c) handle the problem
of potential duplicate existence in the join results, which may arise due to the way partitions
are created, and (d) process the actual join on the partitions in an efficient way. The first
challenge sets the foundations for parallel processing, as it identifies pairs of partitions that
can be processed together, without any additional data, and produce a subset of the final join
result. The second challenge is about load balancing and determines the efficiency of parallel
processing, which is not straightforward, since processing uneven work units in parallel may lead
to sub-optimal performance (as the slowest task will determine the query execution time). The
third challenge, labeled duplicate avoidance, is about avoiding to generate duplicate results which
typically occurs in parallel join processing. Finally, the fourth challenge, labeled efficient join,
refers to the efficiency of the (centralized) algorithm used to join two partitions.

Clearly, solving the above problem is quite challenging in a distributed setting, as multiple
challenges need to be addressed at the same time. In the following sections, we present a
well designed solution solution to the Distributed Sub-trajectory Join problem along with two
improved versions, following the popular MapReduce paradigm.

70

D3.3 Primitive Query Operators H2020-ICT-2017-1

5.3 The Basic Sub-trajectory Join Algorithm

5.3.1 Preliminaries

One of the prevalent technologies for dealing with Big Data and offline analytics, is the MapRe-
duce programming paradigm [12] and its open-source implementation Hadoop [40]. A lot of
efforts have been made as far as it concerns join processing through this technology and a survey
on limitations of MapReduce/Hadoop, also related to join processing, is conducted in [15]. In
more detail, Hadoop is a distributed system created in order to process large volumes of data
which are usually stored in the Hadoop Distributed File System (HDFS). In more detail, when
running a MapReduce (MR) job, each Mapper processes (in parallel) an input split, which is a
logical representation of data. An input split typically consists of a block of data (the default
block size is 128MB) but it can be adjusted according to the users’ needs by implementing a cus-
tom FileInputFormat along with the corresponding FileSplitter and RecordReader. Subsequently,
for each record of the split the “map” function is applied. The output of the Map phase is sorted
and grouped by the “key” and written to the local disk. Successively, the data is partitioned to
Reducers based on a partitioning strategy (also known as shuffling), and each Reducer receives
a partition (group) of data and applies the “reduce” function to the specific group. Finally, the
output of the Reduce phase is written to HDFS.

5.3.2 The DTJb Algorithm

HDFS
Block 1

HDFS
Block 2

HDFS
Block L

.

.

.
.
.

expPart 1
[t1-εt,t2+εt)

Join()

expPart 2
[t2-εt,t3+εt)

Join()

File 1
Joined Data

[t1,t2)

File 2
Joined Data

[t2,t3)

File M
Joined Data

[tM-1,tM]

Input Map Reduce
Output
to HDFS

.

.

expPart M
[tM-1-εt,tM+εt]

Join()

[t1-εt,t2+εt)

[t2-εt,t3+εt)

[tM-1-εt,tM+εt]

.

.

Assign()

[t1-εt,t2+εt)

[t2-εt,t3+εt)

[tM-1-εt,tM+εt]

.

.

Assign()

Trajectory 1
Refine()

Trajectory 2
Refine()

Trajectory L
Refine()

.

.

File 1
Read()

File 2
Read()

File M
Read()

.

.

Map Reduce
Group by
Trajectory
& Sort By t

Output
to HDFS

Output
1

Output
2

Output
L

.

.

.

Group by
Partition

& Sort By t

Job 1 Job 2

Figure 13: The DTJb algorithm in MapReduce.

Our first algorithm, named DTJb, consists of three phases: (a) the Partitioning phase, where
input data is read and partitioned, (b) the Join phase, where the sets JP , BP and sNJP are

71

D3.3 Primitive Query Operators H2020-ICT-2017-1

identified in each partition, and (c) the Refine phase, where these sets are grouped by trajectory
and sorted by time in order to identify all the pairs of “maximally matching” sub-trajectories3.

Partitioning Phase The first challenge is how to partition the input data in order to satisfy
the requirement for parallel processing. Partitioning the data into N disjoint temporal partitions
R = ∪Ni=1parti, where R is the set of trajectories, cannot guarantee the correctness during par-
allel processing, due to the temporal tolerance parameter εt. Hence, we define a partitioning
where each parti is expanded by εt, thus expanded partitions can be processed independently in
parallel. Let expParti denote such an expanded partition. Processing each expParti individu-
ally guarantees correctness, but at the cost of having duplicates due to the point replication in
temporally overlapping partitions. To address this duplication avoidance challenge, we supple-
ment each point with a flag partFlag that indicates whether this point belongs to the original
partition (i.e. not expanded by εt) or not.

Lemma 3 An expanded partition expParti is sufficient in order to produce the sets of JP and
BP for parti

Unfortunately, an expanded partition expParti is not sufficient in order to produce the set of
sNJP since, according to Definitition. 6, for each pair (rj , sk) that belongs to NJP we need to
examine rj−1 and rj+1, which may span to other partitions. However, the set of sNJP can be
identified at the Refine phase, where all the pairs concerning a trajectory are grouped together.

In more detail, we choose to partition the data into uniform temporal partitions, where for
each pair of partitions (parti, partj), with i 6= j and i, j ∈ [1, N], it holds thatDistT (tpartie , tpartis) =

DistT (t
partj
e , t

partj
s). Typically, the duration of a partition is larger than the maximum interval

between two consecutive points of any trajectory. As illustrated in Figure 13, in the Map phase
we access each data point and assign it to the expanded partition with which it intersects, essen-
tially applying a temporal range partitioning. Then, the data is grouped by expanded partition,
sorted by time and fed to the Reduce phase, where the Join procedure takes place.

Join Phase Figure 13 shows that each Reducer task takes as input an expanded partition and
performs the Join operation. At this point, the duplication avoidance technique is applied, by
employing the aforementioned flag and emitting only pairs where at least one point belongs to the
original partition. The input of this phase is a set of tuples of the form 〈t, x, y, trajID, partF lag〉.
The output of this MR job is a set of (a) JP , (b) BP and (c) candidate sNJP .

In more detail, we apply a plane sweep technique in order to perform the Join, by sweeping
the temporal dimension. We choose to employ such a technique due to the fact that is much more
efficient than a nested-loop join approach, since our data already arrive sorted by the temporal
dimension, as illustrated in Figure 13. A typical plane sweep algorithm would emit only the set
of JP , which is not enough in our case. For this reason, we devised and implemented a modified

3For the sake of simplicity, from now on, we are going to consider the case of self-join. The transition to the
problem of joining two relations is straightforward.

72

D3.3 Primitive Query Operators H2020-ICT-2017-1

Algorithm 1: Join(expPart, εsp, εt)

1: Input: An expPart, εsp, εt
2: Output: All pairs of JP , BP and candidate sNJP
3: for each point i ∈ expPart do
4: D[i]← point
5: TRJPlaneSweep(D[], εsp, εt)
6: TreatLastTrPoints()
7: for each point j ∈ BP [] do
8: output((BP [j], null), True)

Algorithm 2: TRJPlaneSweep(D[], εsp, εt)
1: Input: D[], εsp, εt
2: Output: All pairs of JP , BP and candidate sNJP
3: if D[i].partF lag=True then
4: for each element D[j] ∈ [D[i].t− εt, D[i].t] do
5: if DistS(D[i], D[j]) ≤ εsp then
6: output((D[i], D[j]), True)
7: remove D[i] from BP []
8: if D[j].partF lag=True then
9: output((D[j], D[i]), True)

10: remove D[j] from BP []
11: k ← getPrevTrPoint(j,D[])
12: if FindMatch(D[], i, k, εsp, εt) = False then
13: output((D[i], D[k]), False)
14: k ← getPrevTrPoint(i,D[])
15: if FindMatch(D[], j, k, εsp, εt)= False then
16: if D[j].partF lag=True then
17: output((D[j], D[k]), False)
18: if there is no “match” for D[i] then
19: BP []← D[i]

plane sweep technique, named TRJPlaneSweep, depicted in Figure 14, which also reports the
sets of BP and candidate sNJP .

Algorithm 1 presents how the Join processing is performed. Each accessed point is inserted to
an array D, which contains points sorted in increasing time. After point insertion, (Algorithm 2
is invoked for the currently accessed point (say D[i]) if D[i] belongs to the original partition.
TRJPlaneSweep examines the previously accessed points for the previous εt window (line 4).
The role of this function is threefold. First, it identifies joining points with D[i], e.g., point D[j],
and emits them in the form ((D[i], D[j]), T rue) (lines 5-10). Depending on the outcome of the
duplicate avoidance technique, pairs ((D[j], D[i]), T rue) are also output. Second, it discovers
points that belong to the candidate sNJP set by examining whether the previous trajectory
point (getPrevTrPoint)) of D[j] (and D[i]), say D[k], is a NJP (FindMatch) with each point
∈ D[i].trajID (D[j].trajID, respectively) (lines 11-17). In case such points are identified, they

73

D3.3 Primitive Query Operators H2020-ICT-2017-1

are output with a different flag ((D[i], D[k]), False) to differentiate them from JP . Third, it
discovers the points that belong to BP . In more detail, in lines 18–19, a breaking point D[i]

is added to the breaking points set BP and in lines 7 and 10 is removed if a point has a
“match”. The remaining points in BP are reported as breaking points, using the following form:
((D[i], null), T rue) (Algorithm 1 lines 7–8).

By examining only the previous point of a JP in a trajectory, we might not examine a possible
temporary adjacent point that might lie after the last JP of a trajectory in each partition. For
this reason, we post-process the last JP s in order to check for candidate sNJP s by invoking the
TreatLastTrPoints function (Algorithm 1 line 6).

≤εsp

≤εsp

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

((q2,r2), True)
x-

A
xi

s

t-Axis

p1 q1 r1 p2 r2 q2

(b) (c)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

(a)

εtεt

((q2,r2), True)

εtεt

p

q

r≤εsp

≥εsp

≤εsp

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

((q2,r2), True)(d)

εt

((q2,p2), True)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2

(e)

εt εt

((q2,r2), True)
((q2,p2), True)
((q2,p1), False)

x-
A

xi
s

t-Axis

p1 q1 r1 p2 r2 q2 r3

((r3,q2), True)

(f)

εt

((q2,r2), True)
((q2,p2), True)
((q2,p1), False)

Figure 14: Join phase - The TRJPlaneSweep algorithm.

Example 1 As illustrated in Figure 14(a), we suppose that the current point inserted into D is
q2. In Figure 14(b), assuming that DistS(q2, r2) ≤ εsp, we get a “match” and pair ((q2, r2), T rue)

is reported (the symmetric pairs are omitted for simplicity). Subsequently, we need to find the
previous point of r and in order to achieve this we should traverse our data backwards until
we find it, as presented in Figure 14(c). When we find r1, we need to check whether it is
a NJP for each point ∈ q, as illustrated in Figure 14(c). If there exists a point ∈ q that
“matches”, in our case q1, nothing is reported and we proceed to examine whether q2 and p2 are
JP s. If DistS(q2, p2) ≤ εsp then we output the pair ((q2, p2), T rue), as shown in Figure 14(d).
Subsequently, we need to find p1 and check whether it is NJP for each point ∈ q. As depicted

74

D3.3 Primitive Query Operators H2020-ICT-2017-1

in Figure 14(e) there is no “match” between p1 and any of the points of q. For this reason, we
report the pair ((q2, p1), False). The same procedure is continued to the next point inserted to
memory as delineated in Figure 14(f) until there are no more points inserted.

The complexity of the Join procedure is O(|D| ·a · ((1− b) · |D|+ b · |D| · (2 · (L+ 2 ·a · |D|)))),
where |D| is the number of points, a is the selectivity of εt and b is the selectivity of εsp. L is
the number of points that have to be traversed in order to find the previous point of a specific
trajectory. It is obvious that when a tends to reach 1 the complexity tends to reach O(|D|2). In
the worst case, the complexity can be analogous to O(|D|3), when both a and b tend to reach 1.
However, for a typical analysis task εt and εsp are much smaller than the dataset duration and
the dataset diameter respectively. Roughly, we can say that the complexity is O(a · b · |D|2).

Refine Phase The output of the Join phase is actually pairs of points. From now on, let us
refer to the left point of such a pair as reference point and the trajectory that it belongs to,
reference trajectory. The Refine phase consists of a second MR job that reads the output of the
Join step and groups points by the reference trajectory. Each Reduce task receives all pairs of
points belonging to a specific trajectory, sorted first by the reference point’s time and the by the
non-reference trajectory ID. Figure 15 shows an example where the output pairs of points from
the Join step are grouped, sorted and fed as input to three Reduce tasks (for trajectories p, q,
and r respectively). The general idea here is to scan the set of JP in a sliding window fashion
so as to identify “maximally” matching sub-trajectories and at the same time “consult” the sets
of BP and sNJP in order to avoid false identifications, as described in Section 5.2.2.

((p1,q1), True)

((q1,p1), True)

((p2,q1), False)

((q2,p1), False)

((r3,q2), False)

((r2,q2), True)

((q2,r2), True)

((q1,r1), True)

((r1,q1), True)

((p1,q1), True)

((q1,p1), True)

((p2,q1), False)

((q2,p1), False)

((r3,q2), False)

((r2,q2), True)

((q2,r2), True)

((q1,r1), True)

((r1,q1), True)

((p1,q1), True)

((p2,q1), False)

((p1,q1), True)

((p2,q1), False)

((q1,p1), True)

((q2,p1), False)

((q2,r2), True)

((q1,r1), True)

((q1,p1), True)

((q2,p1), False)

((q2,r2), True)

((q1,r1), True)

((r3,q2), False)
((r2,q2), True)
((r1,q1), True)

((r3,q2), False)
((r2,q2), True)
((r1,q1), True)

(q1,{p1,r1})
(q2,{r2})

(q1,{p1,r1})
(q2,{r2})

(r1,{q1})
(r2,{q2})
(r1,{q1})
(r2,{q2})

MatchList FalseList
Join

Output Pairs
Sort & Group

(p1,{q1})(p1,{q1}) (p2,{q1.trajID})(p2,{q1.trajID})

(q2,{p1.trajID})(q2,{p1.trajID})

(r3,{q2.trajID})(r3,{q2.trajID})

Figure 15: Output of Join and input of Refine phase.

Hence, each Reducer accesses all the pairs of a reference trajectory (say p) sorted by time,
i.e., {p1, p2, . . . , pn}. Algorithm 3 describes the pseudo-code of the Refine phase which aims to
identify all the “maximally matching” pairs of sub-trajectories of p with other sub-trajectories of
any trajectory x (x 6= p). For each accessed pair ((pi, xj),flag), the algorithm assigns it in one
of the two structures that it maintains: the MatchList and the FalseList. All JP and BP will
be kept in the MatchList, whereas the candidate sNJP is kept in the FalseList (lines 10–13).

75

D3.3 Primitive Query Operators H2020-ICT-2017-1

Algorithm 3: Refine(δt, εt)
1: Input: Pairs of points ((pi, xj),flag) for a given trajectory p, sorted by time
2: Output: Result of Distributed Sub-trajectory Join for p
3: for each pair of points ((pi, xj),flag) do
4: if (pi is encountered for the first time) then
5: if DistT(MatchList.lastEntry, MatchList.firstEntry) ≥ δt then
6: resultT ← intersect lists in MatchList and exclude FalseList
7: resultF ← apply sliding window of δt to resultT
8: resultFinal ← resultFinal

⋃
resultF

9: remove MatchList.firstEntry
10: if (flag = True) then
11: addToMatchList(pi, xj)
12: else
13: addToFalseList(pi, xj)
14: output(resultFinal)

Again, this is more clearly depicted in the example of Figure 15. Also, notice that for each
reference point in the MatchList, we maintain a list of points sorted by trajectory ID.

Lemma 4 The set of candidate sNJP is sufficient so as to identify the set of sNJP at the
Refine phase.

The algorithm proceeds as follows: as soon as all pairs of points of a specific reference point
pi have been accessed, it initiates processing on the MatchList. The processing takes place only
if the first and last point of p in MatchList have temporal distance greater than or equal to δt
(line 5). The processing essentially identifies points of other trajectories that join with points of
p in the whole temporal window. This is performed by intersecting the lists in MatchList and
excluding points existing in the FalseList (line 6). List intersection is efficiently performed in
linear time to the length of the lists, since the lists are sorted by trajectory ID. Figure 16 depicts
the result of this processing as resultT.

Subsequently, the points in resultT are processed as follows. We start from the first point and
take into consideration all points with temporal distance at most δt − 2εt from the first point.
From this set of points, we derive the sub-trajectories that “match” for the entire δt−2εt window,
and insert them in resultF (line 7). The temporary results of the resultF structure are added to
the final result structure resultFinal, if not already contained in it (line 8). Then, a new set of
points is considered, of temporal distance at most δt− 2εt from the second point of resultT and
the process is repeated, similarly to a sliding a window of duration δt − 2εt on resultT. In the
end, the first entry of the MatchList (p1, {q1, r1, s1}) is removed (line 9), as all potential results
containing p1 have already been produced. The algorithm terminates when the entire trajectory
is traversed, the resultFinal is returned and each element of this list is emitted.

Example 2 Figure 16 presents a working example of the Refine algorithm given the specific
MatchList and FalseList of trajectory p.Assuming that DistT (p1.t, p7.t) ≥ δt, we intersect all

76

D3.3 Primitive Query Operators H2020-ICT-2017-1

δ
t-2

ε
t

C
h

ec
kC

o
n

ta
in

m
en

t(
)

FalseList

(p5,{q6.trajID})
(p4,{s5.trajID})

δ
t

resultT

(p1,{q1,r1,s1})

(p7,{r7})

(p2,{q2,r2,s2})

(p3,{q3,r3,s3})

(p4,{q4,r4,s4})

(p5,{q5,r5})

(p6,{r6})

Check
FalseList()

resultFinal

(p1,{q1,r1})

(p2,{q2,r2})

(p3,{q3,r3})

(p4,{q4,r4})

(p5,{q5,r5})

MatchList

(p1,{q1,r1,s1})

(p7,{q7,r7})

(p2,{q2,r2,s2})

(p3,{q3,r3,s3})

(p4,{q4,r4,s4})

(p5,{q5,r5})

(p6,{q7,r6})

resultF

(p1,{q1,r1})

(p2,{q2,r2})

(p3,{q3,r3})

(p4,{q4,r4})

(p5,{q5,r5})

Figure 16: Refine procedure.

the lists contained in the specific window of the MatchList and we pass the result to resultT. In
this way, the list of the last entry of resultT will contain only the points that belong to the sub-
trajectories that move “close” enough with p for the whole δt window. During list intersection,
we take into account the FalseList structure in order to deal with points that belong to sNJP .
Specifically, even though for each pi, with i ∈ [1,7] ∃ a “match” with q, however q6 has no “match”
with p, as depicted in the FalseList. For this reason, q should be excluded from resultT after p5.
Then, a sliding δt − 2εt window is created that traverses resultT, and for each such window we
intersect all lists and the result is stored in resultF. For the first δt − 2εt window, as depicted
in Figure 16, sub-trajectories r1,5 and q1,5 are identified. The reason for this is to discover the
sub-trajectories that move “close” enough, with p for the whole δt − 2εt window. Subsequently,
before proceeding to the next δt window, the contents of resultF are inserted to the final result,
if not already contained.

The complexity of the Refine procedure is O(T ·SW ·dt · l), where T is the average number of
points in a trajectory, SW is the number of points contained in the δt window, dt is the number
of points contained in the δt − 2εt window and l is the size of the list. The complexity, here,
clearly depends on the average number of points per trajectory, the εt and δt parameter, and the
number of pairs emitted by the join phase which in turn depends on εt and εsp.

5.4 Sub-trajectory Join with Repartitioning

Even though the DTJb algorithm provides a correct solution to the Distributed Sub-trajectory
Join problem, it has some limitations. In particular, it does not address the load balancing
challenge, since it does not handle the case of temporally skewed data. Also, due to the two

77

D3.3 Primitive Query Operators H2020-ICT-2017-1

chained MR jobs, the intermediate output of the first job is written to HDFS and must be read
again by the second job, which imposes a significant overhead as its size is comparable and can
be even bigger than the original dataset.

Motivated by these limitations, we propose an improved two-step algorithm (DTJr), which
consists of the repartitioning and the query step. Each step is implemented as a MR job.
However, the repartitioning step is considered a preprocessing step, since it is performed once
and is independent of the actual parameters of our problem, namely εsp, εt, and δt.

Output
1

.

.

.

HDFS
Block 1

HDFS
Block 2

HDFS
Block L

.

.

..
.
.

Partition 1
[t1,t2)

Partition 2
[t2,t3)

Partition M
[tM-1,tM]

File 1 Data
[t1,t2)

File 2 Data
[t2,t3)

File M Data
[tM-1,tM]

[t1,t2)

[t2,t3)

[tM-1,tM]

.

.

Assign()

Group by
Partition

& Sort By t
Input Map Reduce

Output
to HDFS

.

.

.
[t1,t2)

[t2,t3)

[tM-1,tM]

.

.

Assign()

In
p

u
t

Sa
m

p
le

r

Equi-depth
Histogram

Bin 1
[t1,t2)

Bin M
[tM-1,tM]

...

Sampler & Equi-
depth

Histogram
Creation

Input Spit
Creation

.

.

.

Trajectory 1
Refine()

Trajectory 2
Refine()

Trajectory L
Refine()

.

.

Split 1
Join()

Split 2
Join()

Split M
Join()

.

.

Map Reduce
Group by
Trajectory
& Sort By t

Output
to HDFS

Output
2

Output
L

.

.

.

Split 1 Data
[t1-εt,t2+εt)

Split 2 Data
[t2-εt,t3+εt)

Split M Data
[tM-1-εt,tM+εt)

(a) (b)

Figure 17: The DTJb algorithm in MapReduce: (a) Repartitioning step and (b) Query step.

5.4.1 Repartitioning

The aim of the repartitioning step is to split the input dataset inM equi-sized, temporally-sorted
partitions (files), which are going to be used as input for the join algorithm. This is essential for
two reasons: (a) it will provide the basis for load balancing, by addressing the issue of temporal
skewness in the input data, and (b) it will result in temporal collocation of data, thus drastically
reducing processing and network communication costs.

The repartitioning step is performed by means of a MR job as follows. We sample the input
data, using Hadoop’s InputSampler, and construct an equi-depth histogram on the temporal
dimension. The histogram containsM equi-sized bins, i.e. the numbers of points in any two bins
are equal, where the borders of each bin correspond to a temporal interval [ti, tj).

The equi-depth histogram is exploited by the Map phase in order to assign each incoming
data object in the corresponding histogram bin, based on the value of its temporal dimension.
Each “map” function outputs each data object using as key a value [1,M] that corresponds to
the bin that the object belongs to. During shuffling, all data objects that belong to a specific bin
are going to be sorted in time and will be collected by a single “reduce” function (thus having
M “reduce” functions). As a result, each “reduce” function writes an output file to HDFS that
contains all data objects in a specific temporal interval [ti, tj) sorted by increasing time. A

78

D3.3 Primitive Query Operators H2020-ICT-2017-1

graphical view of the MR job is provided in Figure 17(a).
A subtle issue is how to determine the number M of bins (and, consequently, output files).

A small value of M , smaller than the number of nodes in the cluster, would be opposed to the
collocation property because data would have to be transferred through the network. On the
other hand, a large value of M would result to many small files, smaller than the HDFS block
size, and would lead to inefficient use of resources as well as increasing the management cost of
these HDFS files. A good compromise is to have files of equal size to the HDFS block. Hence, the
number of files can be calculated as M = d InputTotalSize

hdfsblocksize e. Collocation can be further improved
by placing temporally adjacent files to the same nodes. This can be achieved by grouping together
k consecutive files, where k = dMN e, with N being the number of nodes, and using their group id
as the partition key.

5.4.2 The DTJr Algorithm

In order to minimize the I/O cost, the MR job that implements the proposed algorithm performs
the Join procedure in the Map phase, and the Refine in the Reduce phase. To achieve this, we
need to provide to a Map task as input, a data partition that contains all necessary data in order
to perform part of the Join procedure independently from other Map tasks. Thus, an HDFS
block produced by the repartitioning phase is expanded with additional points that exist at
time (+/-)εt, and this is the process of InputSplits creation. In this way, points are duplicated to
other HDFS blocks, which means that the same point may be output by two different Map tasks.
To avoid this pitfall, a different duplicate avoidance mechanism is introduced which practically
determines that a point is going to be output only by a single Map task; the Map task processing
the HDFS block where the point belongs to.

As already mentioned, each data partition (InputSplit) that is fed to a Map task should
contain all the data needed to perform the join of points for the specific partition, i.e. data for
the period [tparts −εt, tparts +εt]. However, an output file produced by the repartitioning step is not
sufficient due to the temporal tolerance εt, thus we need to augment these output files with extra
data points, so that they form independent data partitions. At technical level, we devised and
implemented a new FileInputFormat called BloatFileInputFormat, along with the corresponding
FileSplitter and RecordReader, which selectively combines different files in order to create splits
that carry all the necessary data points. Furthermore, during the creation of input splits we
augment (as metadata) each split with the starting and ending time of the original partition of
each split, termed tbases and tbasee . The utility is to provide us with a simple way to perform
duplicate avoidance at the Join phase.

Figure 17(b) shows that each Map task takes as input a split and performs the join at the
level of point for a specific data partition. The input of this phase is a set of tuples of the form
〈t, x, y, trajID〉 sorted in ascending time t order. Since the data are already sorted w.r.t. the
temporal dimension, we can apply the Join procedure, presented in Section 5.3.2. The output
of the Map phase will be the JP , BP and sNJP sets. Finally, the Refine procedure presented

79

D3.3 Primitive Query Operators H2020-ICT-2017-1

in Section 5.3.2 can be performed at the Reduce phase.

5.5 Index-based Sub-trajectory Join with Repartitioning

The Join step of the previous algorithms is common and operates on the array D that contains
temporally sorted points. However, it can be improved in two ways. First, by employing spatial
filtering in order to avoid attempting to join points that are far away. Second, by having an
index structure that given a point pi can efficiently locate the (temporally) previous point pi−1
of p. Motivated by these observations, we devised and implemented an indexing scheme in order
to speed up the processing of the join.

5.5.1 Indexing Scheme

{p1, q1, r1, p2, r2, q2, r3, p3}

2nd Level
Spatial

 Partitioning
(e.g. QuadTree)

+
SpI
+

TrI

1st Level
Temporal

 Partitioning

Raw

Data

3rd Level

Data

Data

Partition 1
[t0,t1)

Partition M
[tM-1,tM]

. . .
Partition i

[ti-1,ti)
. . .

Data

Partition 1
[t0,t1)

Partition M
[tM-1,tM]

. . .
Partition i

[ti-1,ti)
. . .

Hash

q{2, 6}

r{3, 5, 7}

p{1, 4, 8}

Hash

{2, 3, 5, 6, 7}

{4, 5, 6, 7, 8}

{3, 5, 6, 7}

{1, 2, 4, 5, 6}

SpI TrI

Figure 18: Indexing Scheme of DTJi algorithm

As illustrated in Figure 18, this scheme consists of 3 levels. We already covered the first level in
Section 5.4.1, where the initial data are partitioned to equi-sized temporal partitions (Section 5.4).
At the second level, we partition the space. In order to have load balanced partitions we utilize the
spatial partitioning provided by QuadTrees. More specifically, an “empty” QuadTree is created
once, by sampling the original data, as in [16], and is written to HDFS. It is important to mention

80

D3.3 Primitive Query Operators H2020-ICT-2017-1

here that the QuadTree contains only the spatial partitions and not the actual points. Then,
when a new query is posed, the QuadTree is loaded into Hadoop’s distributed cache in order to be
accessible by all the nodes. Moreover, at the same level, we employ two indexes. The first index
is a spatial index (SpI) which enables pruning of points based on their spatial distance, thus
decreasing significantly the number of points that need to be examined within the εt window.
The second index is an index that keeps track of the representation of each individual trajectory
within the temporally sorted structure D (TrI), thus providing an efficient way to access the
previous trajectory point. The two indexes are created gradually, as the data are read from
HDFS. Finally, at the third level, we have the temporally sorted data that correspond to the
specific temporal partition.

Spatial Index (SpI) The spatial index, called SpI, utilizes a given space partitioning, in our
case QuadTrees. For each spatial partition of the QuadTree, SpI keeps a temporally sorted array
where each entry is the position of a point that is contained in the given partition expanded by
εsp. SpI is implemented as a HashMap with key the partition id and value the sorted array. Thus,
a partition can be accessed in O(1), while a point in a partition can be accessed in O(logPi),
where Pi here is the number of points in the corresponding sorted array. The construction
of SpI has O(|D| · h) complexity, where |D| is the number of points in the specific temporal
partition and h is the height of the QuadTree, since for each point we need to traverse the
QuadTree in order to find out in which expanded partition it is contained. Note that each point
is enriched with the id of its original (i.e. not expanded) spatial partition, thus consisting of
〈trajID, x, y, t, PartitionID〉.

Trajectory Index (TrI) The TrI index keeps track of each individual trajectory within D.
TrI is also implemented as a HashMap with key the trajectory id. For each trajectory, the value
is a temporally sorted array, where each entry corresponds to a point of a trajectory, and the
value of the entry is an integer indicating the point’s position in D. Thus, a trajectory point can
be efficiently accessed in O(logT), where T is the number of points of a trajectory. To exemplify,
the first element of the array holds the position of the first point of the trajectory inside D and
so on. The construction of this index has O(T) time complexity since the data is already sorted
in time.

5.5.2 The DTJi Algorithm

Having these two indexes at hand we can utilize them in order to perform the join operation
in an efficient way. Algorithm 4, presents the index-enhanced plane sweep procedure. Initially,
the QuadTree is loaded into memory from the distributed cache (line 3) and then, each accessed
point is inserted not only to an array D, which contains points sorted in increasing time, but
also to the SpI and TrI indexes. Finally, the TRJPlaneSweepI() algorithm is invoked for each
accessed point (lines 4–7).

81

D3.3 Primitive Query Operators H2020-ICT-2017-1

Algorithm 4: JoinI (Split, εsp, εt, tbases , tbasee)

1: Input: A split, εsp, εt, tbases , tbasee

2: Output: All pairs of JP , BP and candidate sNJP
3: QT ← LoadQuadTree()
4: for each point i ∈ Split do
5: if point.t ∈ [tbases − εt, tbasee + εt] then
6: D[i], T rI, SpI ← point
7: TRJPlaneSweepI(D[], T rI, SpI, εsp, εt, t

base
s , tbasee)

8: TreatLastTrPoints()
9: for each point j ∈ BP [] do

10: output((BP [j], null), True)

Algorithm 5, presents the TRJPlaneSweepI() algorithm. Here, given a point pi ∈ p, instead of
scanning the whole εt window before it, in order to find “matches”, we perform a search in SpI and
get only the points that belong to the same partition as pi by invoking the getCandidatePoint()
method (line 4). The partition id is retrieved in O(1) and then binary search is performed in
the temporally sorted list of points in order to find the position of pi inside it. Having that, we
can get the previous element, which will be the previous point in time that lies within the same
partition, and check if the temporal and spatial constraint are satisfied. If they are satisfied, we
have a “match”, we proceed to the previous element of SpI and so on and so forth. Assuming
that we have a “match” with qj that belongs to trajectory q we need to find the previous point
of q. This is achieved by invoking getPrevTrPointI , which performs a search in TrI in order
to retrieve in O(1) the entry of q (lines 11, 14). Then, by performing binary search in the
temporally sorted list, we can find the position of qj and can easily get qj−1. Having that, we
need to find if it “matches” with any point that belongs to p. Here, instead of scanning the whole
2εt window of qj−1 in order to check for “matches” with p, we perform a search in TrI in order
to get the points of p that exist “close” to the time of qj−1 (lines 12, 15). Then, if the spatial
and temporal constraints are satisfied we have a “match” and the FindMatchI() method returns
True. Otherwise, the whole procedure continues, until the temporal constraint is not satisfied
anymore.

The complexity of the index-based solution is O(|D| · h · (log2Pi · a ·Pi((1− b) ·Pi + b ·Pi · (2 ·
(log2T +(log2T +a ·T))))))), with |D| being the number of points, h the height of the QuadTree,
a and b the selectivity of εt and εsp respectively. Pi is the number of points within the i-th
partition expanded by εsp, where Pi � |D|, and T is the number points per trajectory. In the
worst case, where a and b tend to 1, the complexity can reach O(|D| · log2Pi · P 2

i). However,
again this only occurs for values of εt and εsp that are comparable to the dataset’s duration and
diameter respectively. Roughly speaking, the complexity drops to O(|D| · (log2Pi · a · b · P 2

i)),
which clearly shows the benefit attained when employing the proposed indexing scheme.

82

D3.3 Primitive Query Operators H2020-ICT-2017-1

Algorithm 5: TRJPlaneSweepI(D[], T rI, SpI, εsp, εt, t
base
s , tbasee)

1: Input: D[], εsp, εt, tbases , tbasee

2: Output: All pairs of JP , BP and candidate sNJP
3: if DuplCheck(D[i].t, tbases , tbasee)=True then
4: for each element D[j] returned by getCandidatePoint(i, SpI,D[]) do
5: if DistS(D[i], D[j]) ≤ εsp then
6: output((D[i], D[j]), True)
7: remove D[i] from BP []
8: if DuplCheck(D[j].t, tbases , tbasee)=True then
9: output((D[j], D[i]), True)

10: remove D[j] from BP []
11: k ← getPrevTrPointI(j,D[], T rI);
12: if FindMatchI(D[], i, k, εsp, εt, T rI)= False then
13: output((D[i], D[k]), False)
14: k ← getPrevTrPointI(i,D[], T rI);
15: if FindMatchI(D[], j, k, εsp, εt, T rI) = False then
16: if DuplCheck(D[j].t, tbases , tbasee)=True then
17: output((D[j], D[k]), False)
18: if there is no “match” for D[i] then
19: BP []← D[i]

5.6 Experimental Study

In this section, we provide our experimental study on the comparative performance of the three
variations of our solution, namely (1) DTJb that uses two MR jobs (Section 5.3), (2) DTJr

that employs repartitioning and a single job to perform the join (Section 5.4), and (3) DTJi

that additionally uses the SpI and TrI indexes for more efficient join processing (Section 5.5).
Furthermore, we compare our solution with the work presented in [49].

The experiments were conducted in a 49 node Hadoop 2.7.2 cluster, provided by okeanos4,
an IAAS service for the Greek Research and Academic Community. The master node consists
of 8 CPU cores, 8 GB of RAM and 60 GB of HDD while each slave node is comprised of 4 CPU
cores, 4 GB of RAM and 60 GB of HDD. Our configuration enables each slave node to launch
4 containers, thus resulting that at a given time the cluster can run up to 192 jobs (Map or
Reduce).

For our experimental study, we employed two real datasets from two different domains (urban
and the maritime). In more detail, the first one (named SIS) is a 27GB proprietary insurance
dataset of moving objects around Rome and Tuscany area, that contains approximately 2.2 ×
107 trajectories that correspond to 7.2 × 108 points. This dataset belongs to Pilot 1 of the
Track&Know project. The second one, coined IMIS5, consists of 699,031 trajectories of ships

4https://okeanos.grnet.gr/home/
5The IMIS dataset has been kindly provided by IMIS Hellas for research and educational purposes. It is

available for downloading at http://chorochronos.datastories.org

83

https://okeanos.grnet.gr/home/
http://chorochronos.datastories.org

D3.3 Primitive Query Operators H2020-ICT-2017-1

moving in the Eastern Mediterranean for a period of 3 years. This dataset contains approximately
1.5 billion records, 56GB in total size.

Our experimental methodology is as follows: Initially, we verify the scalability of our al-
gorithms by varying (a) the dataset size, and (b) the number of cluster nodes (Section 5.6.1).
Finally, we compare our solution with the work presented in [49] (Section 5.6.2).

5.6.1 Scalability

(a)

 0

 2

 4

 6

 8

 10

 12

20% 40% 60% 80% 100%

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

Data Percentage

SIS

Refine
Join

(b)

 0

 5

 10

 15

 20

 25

 30

 35

12 24 36 48

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 1
0

3
 s

e
c
)

of Nodes

SIS

Refine
Join

Figure 19: Scalability analysis varying (a) the size of the dataset and (b) the number of nodes
Initially, we vary the size of our dataset and measure the execution time of our algorithm.

To study the effect of dataset size, we created 4 portions (20%, 40%, 60%, 80%) of the original
dataset. As the dataset size increases and the number of nodes remains the same, it is expected
that the execution time will increase. In order to measure this, for each portion Di of the
dataset with i ∈ [1, 5], we calculate SlowDown =

TDi

TD1
, where TD1

is the execution time of the
first portion (i.e. 20%) and TDi

the execution time of the current one. As shown in Figure 19(a),
as the size of the dataset increases, our solutions appears to have linear behaviour. To investigate
further the performance of our solution, we measure separately the execution time of the Join
and Refine phases. Concerning the Join phase, as illustrated in Figure 19(a), it appears that it
is the most “expensive” part of the procedure in comparison with the Refine phase, as expected.
Subsequently, we keep the size of the dataset fixed (at 100%) and vary the number of nodes. As
illustrated in Figure 19(b), we observe that our approach presents linear scaling.

5.6.2 Comparative Evaluation

As already mentioned, the problem of Distributed Sub-trajectory Join has not been addressed yet
in the literature and it is not straightforward (if and) how state of the art solutions to trajectory
similarity search and trajectory join can be adapted to solve the problem. However, if we utilize
only a specific instance of our problem, when δt = 0, then we only need to identify the set of JP
during the Join phase. Based on this observation, we select to compare with the work presented
in [49], called SJMR, a state of the art MapReduce-based spatial join algorithm, which is able

84

D3.3 Primitive Query Operators H2020-ICT-2017-1

to identify efficiently the set of JP that will be passed to the Refine procedure and produce the
desired result. The reason why SJMR was chosen is that it is a generic solution which could
form the basis for any distributed spatial join algorithm and thus required the minimum amount
of modifications so as to match with our problem specification.

More specifically, SJMR repartitions the data at the Map phase and Joins them at the
Reduce phase by performing a plane sweep join. For the sake of comparison, we modified SJMR
by injecting time as a third dimension and introducing parameters εsp and εt. In more detail.
at the Map phase the spatiotemporal space is divided to tiles using a fine grained grid. Then,
each data point is expanded by εsp and εt and is assigned to the tiles with which it intersects.
Subsequently, the tiles are mapped to partitions using the method described in [49]. At the
Reduce phase, the points are grouped by partition and sorted by one of the dimensions (we chose
the temporal dimension so as to be aligned with our solution). Finally, we sweep through the
time dimension and report the set of JP .

 0

 1

 2

 3

 4

 5

 6

20% 40% 60% 80% 100%

Ex
ec

ut
io

n
tim

e
(i
n

10
3

se
c)

Data Percentage

DTJi
SJMR

Figure 20: Comparative evaluation between DTJi and SJMR

So, in this set of experiments we compare DTJi -Join, which outperforms DTJb-Join and
DTJr -Join, with SJMR. In more detail, we vary the size of our dataset and measure the execution
time of the two algorithms. The results, as illustrated in Figure 20 show that DTJi -Join not only
performs significantly better than SJMR but more importantly, the gain of DTJi -Join over SJMR
increases for larger data sets. The reason for this behaviour lies mainly due to the utilization of
the indexing structure of DTJi ([49] uses no indexes) and the fact that DTJi -Join is a Map-only
job where the repartitioning cost is “paid” only once (as a preprocessing step), unlike SJMR,
where this cost is “paid” every time at the Map phase, as explained earlier. For a more thorough
experimental evaluation, please refer to [44].

85

D3.3 Primitive Query Operators H2020-ICT-2017-1

6 Conclusions

In this deliverable, we presented the query operators developed in the context of Work package
3 in the Track&Know project. The work targets batch processing of big data stored using a
scalable NoSQL storage system.

Our main contribution, in line with the work description in the Grant Agreement, is an ab-
straction layer in the form of a programming interface (API), which resides between applications
and scalable NoSQL stores. This layer hides the heterogeneity of data models and languages of
NoSQL stores from the application developer, thus offering a unified way to access the underlying
NoSQL stores. Data access is provided by means of basic query operators (filter, project, aggre-
gation, sorting, etc.) as well as a set of mobility operators (range and k-NN queries). This is an
important step forward towards providing a standardized data access mechanism over different
NoSQL stores, in the same spirit of ODBC/JDBC in relational data management systems. The
benefits for application and big data developers are manifold: avoid learning different APIs and
languages for each individual NoSQL store, ease of programming and flexibility through a single
API, portability of the application code from one NoSQL storage system to another, etc. To
demonstrate our proposal, we provide three prototype implementations over a document-oriented
store (MongoDB), a wide-column store (HBase), and a key-value store (REDIS). Moreover, we
couple the programming API that we offer with a declarative, SQL-like interface, which allows
data scientists and business analysts to interact with different NoSQL stores using a (variant of
a) standardized query language such as SQL.

The second contribution relates to complex query operators for mobility data, which is the
main type of data stored and analyzed in Track&Know. Complex query operators cannot be
efficiently supported by the underlying NoSQL store. A join between data sources is a typical
example of such a complex operator. Therefore, we introduce a generic, distributed join operator
that target mobility data, called distributed sub-trajectory join (DTJ), which identifies maxi-
mal portions of trajectories that move close in space and time. This operator is fundamental
because it is the main building block for different scalable data analysis tasks, for example it
can be exploited for implementing scalable trajectory clustering [45]. We describe the design
and implementation of DTJ in MapReduce/Hadoop and we evaluate its performance against a
state-of-the-art algorithm using real-life data from diverse domains, including the Pilots of the
Track&Know project.

Regarding future work, we feel confident that big data practitioners will find interest in our
work, in order to move towards the vision of standardized data access and efficient querying for
scalable NoSQL stores. We believe that in the next years, researchers both from the industry
and academia are going to focus on the problem of unified access to different scalable storage
solutions, an issue that already has attracted attention in different contexts, including polyglot
persistence and polystores [18].

86

D3.3 Primitive Query Operators H2020-ICT-2017-1

References

[1] Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan, and
Erin Taylor. Subtrajectory clustering: Models and algorithms. In PODS, pages 75–87, 2018.

[2] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and
Joel H. Saltz. Hadoop-gis: A high performance spatial data warehousing system over mapre-
duce. PVLDB, 6(11):1009–1020, 2013.

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark
SQL: relational data processing in spark. In Timos K. Sellis, Susan B. Davidson, and
Zachary G. Ives, editors, Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
1383–1394. ACM, 2015.

[4] Petko Bakalov, Marios Hadjieleftheriou, Eamonn J. Keogh, and Vassilis J. Tsotras. Efficient
trajectory joins using symbolic representations. In Proceedings of MDM, pages 86–93, 2005.

[5] Petko Bakalov, Marios Hadjieleftheriou, and Vassilis J. Tsotras. Time relaxed spatiotempo-
ral trajectory joins. In Proceedings of ACM-GIS, pages 182–191, 2005.

[6] Petko Bakalov and Vassilis J. Tsotras. Continuous spatiotemporal trajectory joins. In GSN,
pages 109–128, 2006.

[7] Christian Böhm, Bernhard Braunmüller, Markus M. Breunig, and Hans-Peter Kriegel. High
performance clustering based on the similarity join. In Proceedings of CIKM, pages 298–305,
2000.

[8] Kevin Buchin, Maike Buchin, Marc J. van Kreveld, and Jun Luo. Finding long and similar
parts of trajectories. Comput. Geom., 44(9):465–476, 2011.

[9] Yun Chen and Jignesh M. Patel. Design and evaluation of trajectory join algorithms. In
Proceedings of SIGSPATIAL, pages 266–275, 2009.

[10] Christophe Claramunt, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadza-
gic, Gennady L. Andrienko, Natalia V. Andrienko, Yannis Theodoridis, George A. Vouros,
and Loïc Salmon. Maritime data integration and analysis: recent progress and research
challenges. In Proceedings of EDBT, pages 192–197, 2017.

[11] Ali Davoudian, Liu Chen, and Mengchi Liu. A survey on nosql stores. ACM Comput. Surv.,
51(2):40:1–40:43, 2018.

87

D3.3 Primitive Query Operators H2020-ICT-2017-1

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun.
ACM, 53(1):72–77, 2010.

[13] Hui Ding, Goce Trajcevski, and Peter Scheuermann. Efficient similarity join of large sets of
moving object trajectories. In TIME, pages 79–87, 2008.

[14] Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, and Hujun Bao. Ultraman: A unified
platform for big trajectory data management and analytics. PVLDB, 11(7):787–799, 2018.

[15] Christos Doulkeridis and Kjetil Nørvåg. A survey of large-scale analytical query processing
in mapreduce. VLDB J., 23(3):355–380, 2014.

[16] Ahmed Eldawy and Mohamed F. Mokbel. Spatialhadoop: A mapreduce framework for
spatial data. In Proceedings of ICDE, pages 1352–1363, 2015.

[17] Ahmed Eldawy and Mohamed F. Mokbel. The era of big spatial data: A survey. Foundations
and Trends in Databases, 6(3-4):163–273, 2016.

[18] Aaron J. Elmore, Jennie Duggan, Mike Stonebraker, Magdalena Balazinska, Ugur Çet-
intemel, Vijay Gadepally, Jeffrey Heer, Bill Howe, Jeremy Kepner, Tim Kraska, Samuel
Madden, David Maier, Timothy G. Mattson, Stavros Papadopoulos, Jeff Parkhurst, Nesime
Tatbul, Manasi Vartak, and Stan Zdonik. A demonstration of the bigdawg polystore system.
Proc. VLDB Endow., 8(12):1908–1911, 2015.

[19] EMSA. Automated behaviour monitoring (abm) algorithms – operational use at emsa. In
Proceedings of MKDAD Workshop, pages 12–16, 2016.

[20] Qi Fan, Dongxiang Zhang, Huayu Wu, and Kian-Lee Tan. A general and parallel platform
for mining co-movement patterns over large-scale trajectories. PVLDB, 10(4):313–324, 2016.

[21] Yixiang Fang, Reynold Cheng, Wenbin Tang, Silviu Maniu, and Xuan S. Yang. Scalable
algorithms for nearest-neighbor joins on big trajectory data. In Proceedings of ICDE, pages
1528–1529, 2016.

[22] Sergej Fries, Brigitte Boden, Grzegorz Stepien, and Thomas Seidl. Phidj: Parallel similarity
self-join for high-dimensional vector data with mapreduce. In Proceedings of ICDE, pages
796–807, 2014.

[23] Francisco García-García, Antonio Corral, Luis Iribarne, Michael Vassilakopoulos, and Yan-
nis Manolopoulos. Enhancing spatialhadoop with closest pair queries. In Proceedings of
ADBIS, pages 212–225, 2016.

[24] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan Narayanam,
Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and Utkarsh Srivastava. Building
a highlevel dataflow system on top of mapreduce: The pig experience. Proc. VLDB Endow.,
2(2):1414–1425, 2009.

88

D3.3 Primitive Query Operators H2020-ICT-2017-1

[25] Joachim Gudmundsson and Marc J. van Kreveld. Computing longest duration flocks in
trajectory data. In 14th ACM International Symposium on Geographic Information Systems,
ACM-GIS 2006, November 10-11, 2006, Arlington, Virginia, USA, Proceedings, pages 35–
42, 2006.

[26] Edwin H. Jacox and Hanan Samet. Metric space similarity joins. ACM Trans. Database
Syst., 33(2):7:1–7:38, 2008.

[27] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao Shen.
Discovery of convoys in trajectory databases. PVLDB, 1(1):1068–1080, 2008.

[28] Nikolaos Koutroumanis, Panagiotis Nikitopoulos, Akrivi Vlachou, and Christos Doulkeridis.
Noda: Unified nosql data access operators for mobility data. In Walid G. Aref, Michela
Bertolotto, Panagiotis Bouros, Christian S. Jensen, Ahmed Mahmood, Kjetil Nørvåg, Dim-
itris Sacharidis, and Mohamed Sarwat, editors, Proceedings of the 16th International Sym-
posium on Spatial and Temporal Databases, SSTD 2019, Vienna, Austria, August 19-21,
2019, pages 174–177. ACM, 2019.

[29] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. Swarm: Mining relaxed temporal
moving object clusters. PVLDB, 3(1):723–734, 2010.

[30] Wuman Luo, Haoyu Tan, Huajian Mao, and Lionel M. Ni. Efficient similarity joins on
massive high-dimensional datasets using mapreduce. In Proceedings of MDM, pages 1–10,
2012.

[31] Costas Panagiotakis, Nikos Pelekis, Ioannis Kopanakis, Emmanuel Ramasso, and Yannis
Theodoridis. Segmentation and sampling of moving object trajectories based on represen-
tativeness. IEEE Trans. Knowl. Data Eng., 24(7):1328–1343, 2012.

[32] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In Proceedings
of SIGMOD, pages 259–270, 1996.

[33] Nikos Pelekis, Panagiotis Tampakis, Marios Vodas, Costas Panagiotakis, and Yannis
Theodoridis. In-dbms sampling-based sub-trajectory clustering. In Proceedings of EDBT,
pages 632–643, 2017.

[34] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. Skew-resistant
parallel in-memory spatial join. In Proceedings of SSDBM, pages 6:1–6:12, 2014.

[35] Thomas Seidl, Sergej Fries, and Brigitte Boden. MR-DSJ: distance-based self-join for large-
scale vector data analysis with mapreduce. In Proceedings of DBIS, pages 37–56, 2013.

[36] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos Kalnis.
Trajectory similarity join in spatial networks. PVLDB, 10(11):1178–1189, 2017.

89

D3.3 Primitive Query Operators H2020-ICT-2017-1

[37] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S. Jensen, Kai Zheng, and Panos Kalnis.
Parallel trajectory similarity joins in spatial networks. VLDB J., 27(3):395–420, 2018.

[38] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. DITA: distributed in-memory trajectory
analytics. In SIGMOD, pages 725–740, 2018.

[39] Sameh Shohdy, Yu Su, and Gagan Agrawal. Load balancing and accelerating parallel spatial
join operations using bitmap indexing. In Proceedings of International Conference on High
Performance Computing, pages 396–405, 2015.

[40] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In Proceedings of MSST, pages 1–10, 2010.

[41] Yasin N. Silva and Jason M. Reed. Exploiting mapreduce-based similarity joins. In Pro-
ceedings of SIGMOD, pages 693–696, 2012.

[42] Yasin N. Silva, Jason M. Reed, and Lisa M. Tsosie. Mapreduce-based similarity join for
metric spaces. In Proceedings of Cloud-I, page 3, 2012.

[43] Na Ta, Guoliang Li, Yongqing Xie, Changqi Li, Shuang Hao, and Jianhua Feng. Signature-
based trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870–883, 2017.

[44] Panagiotis Tampakis, Christos Doulkeridis, Nikos Pelekis, and Yannis Theodoridis. Dis-
tributed subtrajectory join on massive datasets. ACM Trans. Spatial Algorithms and Sys-
tems, 6(2):8:1–8:29, 2020.

[45] Panagiotis Tampakis, Nikos Pelekis, Christos Doulkeridis, and Yannis Theodoridis. Scalable
distributed subtrajectory clustering. In 2019 IEEE International Conference on Big Data
(Big Data), Los Angeles, CA, USA, December 9-12, 2019, pages 950–959. IEEE, 2019.

[46] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang,
Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a petabyte scale data warehouse
using hadoop. In Feifei Li, Mirella M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa,
Gerhard Weikum, Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu,
Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras, editors, Proceedings of the 26th
International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach,
California, USA, pages 996–1005. IEEE Computer Society, 2010.

[47] Dong Xie, Feifei Li, and Jeff M. Phillips. Distributed trajectory similarity search. PVLDB,
10(11):1478–1489, 2017.

[48] Demetrios Zeinalipour-Yazti, Song Lin, and Dimitrios Gunopulos. Distributed spatio-
temporal similarity search. In Proceedings of CIKM, pages 14–23, 2006.

[49] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. SJMR: parallelizing
spatial join with mapreduce on clusters. In Proceedings of CLUSTER, pages 1–8, 2009.

90

D3.3 Primitive Query Operators H2020-ICT-2017-1

A Ethics Proforma

A. PERSONAL DATA

1. Is personal data going to be processed for the completion of this deliverable?

(a) If “yes”, do they refer only to individuals connected to project partners? Or to third
parties as well?

We have used anonymized data from the data providers in the project, corre-
sponding to the three pilots. The anonymization process took place prior to
data release for usage in Track&Know.

2. Are “special categories of personal data” going to be processed for this deliverable? (whereby
these include personal data revealing racial or ethnic origin, political opinions, religious or
philosophical beliefs, and trade union membership, as well as, genetic data, biometric data,
data concerning health or data concerning a natural person’s sex life or sexual orientation)
No.

3. Has the consent of the individuals concerned been acquired prior to the processing of their
personal data?

(a) If “yes”, based on the Project’s Consent Form? On a different legal basis?

Yes, the partners that act as data providers in the project have acquired consent
from individuals prior to data processing. In the case of personal data, a consent
form has been used. In case of data coming from one of the clients of a data
provider, appropriate agreements have been made about the usage of such data,
always appropriately anonymized.

4. In the event of processing of personal data, is the processing:

(a) “Fair and lawful”, meaning executed in a fair manner and following consent of the
individuals concerned? Yes.

(b) Performed for a specific (project-related) cause only? The usage of any data within
the Task 3.3 and Deliverable D3.3 concerned only implementation and
testing purposes of the developed tools. For the fulfilment of these tasks
appropriately anonymised and deidentified data samples were provided by
partners.

(c) Executed on the basis of the principle of proportionality (meaning that only data that
are necessary for the processing purposes are being processed)? Yes.

(d) Based on high-quality personal data? Yes.

91

D3.3 Primitive Query Operators H2020-ICT-2017-1

5. Are all lawful requirements for the processing of the data (for example, notification of the
competent Data Protection Authority(s), if applicable) adhered to? Not applicable.

6. Have individuals been made aware of their rights (particularly the rights to access, rectify
and delete the data)? Yes, the partners that act as data providers in the project
have acquired consent from individuals prior to data processing, and took care
of informing them of their rights.

B. DATA SECURITY

1. Have proportionate security measures been undertaken for protection of the data, taking
into account project requirements and the nature of the data? Yes.

(a) Brief description of such measures (including physical-world measures, if any)

There have been a number of security measures in place including: (a) remote
access to the machines used only by SSH, (b) data resides on the platform only
during the execution of experiments, (c) access to the NoSQL store requires
authentication.

2. Is there a data breach notification policy in place within your organisation? Yes.

C. DATA TRANSFERS

1. Are personal data transfers beyond project partners going to take place for this deliverable?
No.

(a) If “yes”, do these include transfers to third (non-EU) countries?

2. Are personal data transfers to public authorities going to take place for this deliverable?
No.

(a) Do any state authorities have direct or indirect access to personal data processed for
this deliverable?

3. Taking into account that the Project Coordinator is the “controller” of the processing and
that all other project partners involved in this deliverable are “processors” within the same
contexts, are there any other personal data processing roles attributed to any third parties
for this deliverable? No.

D. ETHICS AND RELATED ISSUES

1. Are personal data of children going to be processed for this deliverable? No.

2. Is profiling in any way enabled or facilitated for this deliverable? Yes, however GDPR
compliance measures are applied.

92

D3.3 Primitive Query Operators H2020-ICT-2017-1

3. Are automated-decisions made or enabled for this deliverable? No.

4. Have partners for this deliverable taken into consideration system architectures of privacy
by design and/or privacy by default, as appropriate? Yes.

5. Have partners for this deliverable taken into consideration gender equality policies? Not
applicable.

6. Have partners for this deliverable taken into consideration confidentiality of the data re-
quirements? Yes.

93

D3.3 Primitive Query Operators H2020-ICT-2017-1

B NoDA

B.1 NoDA Maven Modules Info

NoDA is a multi-module Java project based on Apache Maven and it is available at:
https://github.com/nkoutroumanis/NoSQL-Operators

Particularly, all of its modules are located under the noda-parent project which serves as the
parent project. The project includes a pom.xml file where its configuration regarding to the
packaging of the modules and its external dependencies is defined. The modules of the project
have also their own pom.xml file where their external dependencies are declared. The declared
dependencies in the parent pom.xml file are inherited from the child modules, meaning that can
be shared and thus be utilized directly; without having to be defined in children pom.xml files.
The advantage of this is that duplication is reduced.

B.1.1 Project: noda-parent

In the noda-parent project, we have declared only the dependencies that are utilized directly
from all of the rest modules. Being the parent project, it does not contain any programming
packages or implementation components. Its external dependencies are the following:

1. junit v. 4.12 – library used for testing through which we check parts of the implementation
code while developing.

2. slf4j-api v. 1.7.26 – Simple Logging Facade for Java API used in conjunction with the
logback-classic dependency.

3. logback-classic v. 1.2.3 – library which is considered as the reference implementation of
SLF4J, used for logging.

B.1.2 Module: noda-core

The noda-core module consists of 13 packages with 32 concrete/abstract classes and interfaces.
Approximately, 1000 code lines composite its functionality. The module is used as an external
dependency by all the rest modules. Specifically, its classes and interfaces are inherited and
implemented from the noda-mongodb, noda-hbase and noda-redisearch modules. The noda-client
module uses the noda-core dependency just to have access on the abstract form of NoDA when
defining a connection.

The declared dependencies in the noda-core pom.xml file are inherited from the modules that
use it as an external dependency. For this reason, we do not only declare the dependencies
that are used directly from the noda-core module, but also the common ones we want to make

94

https://github.com/nkoutroumanis/NoSQL-Operators

D3.3 Primitive Query Operators H2020-ICT-2017-1

available to any module that implements NoDA functionality upon a NoSQL database. The
declared dependencies in the noda-core, are the following:

1. spark-core v. 2.4.0 – the fundamental (core) library for using the Spark framework.

2. spark-sql v. 2.4.0 – the library through which we can utilize Dataframes (Datasets) from
Spark when fetching the results from a NoSQL database.

3. quadtree – a library6 which implements a QuadTree in order to form an equi-depth his-
togram for kNN querying.

B.1.3 Module: noda-client

The noda-client module consists of 5 packages with 15 concrete/abstract classes and interfaces.
Approximately, 15,500 code lines (including the generated classes from ANTLR) composite its
functionality. It uses the following external dependencies:

1. noda-core – the fundamental (core) library for using the NoDA abstraction layer upon a
NoSQL database.

2. noda-mongo – the library that implements NoDA upon MongoDB.

3. noda-hbase – the library that implements NoDA upon HBase.

4. noda-redisearch – the library that implements NoDA upon Redis database by using the
RediSearch search engine.

The noda-mongo, noda-hbase and noda-redisearch dependencies are declared as optional. This
means that when utilizing noda-client for accessing a NoSQL store, the optional dependencies
are not included. The user has to define explicitly the module that implements NoDA upon the
NoSQL store that is going to be accessed.

B.1.4 Module: noda-mongodb

The noda-mongodb module consists of 7 packages with 39 concrete/abstract classes and inter-
faces. Approximately, 1300 code lines composite its functionality. It uses the following external
dependencies:

1. noda-core – the fundamental (core) library for inheriting from its classes in order to imple-
ment NoDA functionality upon MongoDB.

2. mongo-java-driver v. 3.8.2 – the MongoDB driver in Java programming language for
synchronous and asynchronous interaction.

3. mongo-spark-connector v.2.4.0 – the MongoDB Connector for Spark library which provides
integration between MongoDB and Apache Spark.

6https://github.com/nkoutroumanis/QuadTree

95

https://github.com/nkoutroumanis/QuadTree

D3.3 Primitive Query Operators H2020-ICT-2017-1

B.1.5 Module: noda-hbase

The noda-hbase module consists of 11 packages with 43 concrete/abstract classes and interfaces.
Approximately, 9100 code lines (including the generated classes from Protocol Buffers) composite
its functionality. It uses the following external dependencies;

1. noda-core – the fundamental (core) library for inheriting from its classes in order to imple-
ment NoDA functionality upon HBase.

2. hbase-client v. 2.2.4 – the HBase client library in Java programming language for accessing
the database.

3. geo v. 0.7.1 – a library7 which provides utility methods for geohashing. It is used for
spatial and spatio-temporal querying upon HBase.

B.1.6 Module: noda-redisearch

The noda-redisearch module consists of 7 packages with 38 concrete/abstract classes and inter-
faces. Approximately, 1400 code lines composite its functionality. It uses the following external
dependencies;

1. noda-core – the fundamental (core) library for inheriting from its classes in order to imple-
ment NoDA functionality upon RediSearch.

2. jredisearch v. 1.4.0 – the Java client library for RediSearch.

7https://github.com/davidmoten/geo

96

https://github.com/davidmoten/geo

	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Purpose and Scope
	Approach for the Work package and Relation to other Deliverables
	Mapping Track&Know Outputs
	Methodology and Structure of this Deliverable

	Overview of Functionality
	Primitive Query Operators
	Complex Query Operators

	Technical Description of NoDA
	Design and Rationale of the NoDA API
	Technical Details
	Interfaces
	Programming interface
	SQL interface
	Related Module Technical Details

	Implementation for MongoDB
	Loading and Querying Spatio-temporal Data
	Related Module Technical Details

	Implementation for HBase
	Loading and Querying spatial data
	Related Module Technical Details

	Implementation for Redis
	Loading and Querying spatio-temporal data
	Related Module Technical Details

	Developer’s guide – Practical Examples of NoDA
	Use of the Programming Interface
	Use of the SQL Interface

	Technical Description of Complex Query Operators
	Distributed Sub-trajectory Join
	Problem Statement
	A Closer Look at the Sub-trajectory Join Problem
	Properties of Sub-trajectory Join

	The Basic Sub-trajectory Join Algorithm
	Preliminaries
	The DTJb Algorithm

	Sub-trajectory Join with Repartitioning
	Repartitioning
	The DTJr Algorithm

	Index-based Sub-trajectory Join with Repartitioning
	Indexing Scheme
	The DTJi Algorithm

	Experimental Study
	Scalability
	Comparative Evaluation

	Conclusions
	Ethics Proforma
	NoDA
	NoDA Maven Modules Info
	Project: noda-parent
	Module: noda-core
	Module: noda-client
	Module: noda-mongodb
	Module: noda-hbase
	Module: noda-redisearch

