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Abstract—The massive and increasing availability of mobility
data enables the study and the prediction of human mobility
behavior and activities at various levels. In this paper, we address
the problem of building a data-driven model for predicting car
drivers’ risk of experiencing a crash in the long-term future, for
instance, in the next four weeks. Since the raw mobility data,
although potentially large, typically lacks any explicit semantics
or clear structure to help understanding and predicting such rare
and difficult-to-grasp events, our work proposes to build concise
representations of individual mobility, that highlight mobility
habits, driving behaviors and other factors deemed relevant for
assessing the propensity to be involved in car accidents. The
suggested approach is mainly based on a network represen-
tation of users’ mobility, called Individual Mobility Networks,
jointly with the analysis of descriptive features of the user’s
driving behavior related to driving style (e.g., accelerations) and
characteristics of the mobility in the neighborhood visited by
the user. The paper presents large experimentation over a real
dataset, showing comparative performances against baselines and
competitors, and a study of some typical risk factors in the
areas under analysis through the adoption of state-of-art model
explanation techniques. Preliminary results show the effectiveness
and usability of the proposed predictive approach.

Index Terms—Mobility Data Model, Crash Prediction, Indi-
vidual Mobility Network, Mobility Data Mining, Car Insurance

I. INTRODUCTION

The huge availability of mobility data collected by car
telematics and car insurance companies is typically used to
provide to end-users services like pay-as-you-drive contracts,
anti-theft control, and prompt emergency rescue in case of
accidents [1]. However, a fundamental task of car insurance
companies is to find the most appropriate policy pricing for
a customer, which consists of a trade-off between profit and
competitiveness. In this context, risk assessment is probably
the most critical problem addressed.

The most intuitive way to solve the risk assessment problem
is to estimate the customer’s risk of having accidents in the
near future [2] since high-risk ones are likely to cause the
company a loss (paying the costs of her accidents), while
low-risk ones are more likely to provide a plain profit. The
basic objective is not only to recognize the real risk level
of a customer but also to understand possible causes [3].
Hence, we aim to reach two distinct results. First, predicting
the customer’s risk score: given a car insurance customer,
provide a risk score relative to the near future, e.g., the next
year or the next month. We expect this estimate to be much

dependent on how the customer drives, as well as on the con-
ditions of the surrounding environment [4]–[6]. Accordingly,
the methodology we propose is based on the computation
of individual driving features, describing how much the user
drives and how much dynamically, also related to the general
characteristics of mobility in the places that the user visits. The
second result we pursue is to infer risk mitigation strategies:
given a car insurance customer and her risk score, we would
like to identify the characteristics of her driving behavior [7]
that determine her risk score. From a prescriptive viewpoint,
this is going to provide to the customer indications of how
to lower down her risk score, with benefits for her (in terms
of safety and insurance costs) and the insurance company (in
terms of costs for accidents). The approach under investigation
queries the predictive models adopted for understanding which
features decided for the prediction [8].

Since raw mobility data collected by car telematics and
car insurance companies is limited to positions and events
of the vehicle [1] with no vision of what happens around
it, or further structured and complex information, in order to
achieve our goals we need to augment the individual data with
additional knowledge. Indeed, raw mobility data describes
elementary events (position, acceleration, etc.), while any
modeling requires a higher-level vision of what is happening to
the user. That should provide some clear semantics, e.g., some
typical maneuvers that involve sequences of deviations, sudden
decelerations, etc. Recognizing and making them explicit is
expected to be an important need. A specific type of semantics
is related to the meaning that the different parts of the mobility
have for the individual: recurrent vs. systematic trips [9],
frequent locations vs. single visit ones [10], transit locations
vs. long stays [11], etc. To infer this type of information,
we need to model the mobility of the individual as a whole,
creating a single, complete picture of it. To this aim, we adopt
Individual Mobility Networks (IMNs) [12], [13], a network-
based representation that integrates important locations, move-
ments, and their temporal dimension in a succinct way. Such
a model allows several different types of inference (detecting
the purpose of the trip [12], simulating realistic mobility
agendas [13], etc.), in contrast to others that are tailored around
specific objectives. In particular, we exploit the integration
of information in the IMNs formalism for inferring mobility
indicators useful for the predictive/prescriptive purposes of the
crash prediction task.
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Crash risk means probability of accidents, which are statis-
tically rare events [14]. This, together with the lack of a clear
set of predictive indicators to adopt, make the risk prediction
a very difficult task. Therefore, the proposed approach takes
into account several different aspects: individual components
of the driving behavior including those that can be derived
from IMNs, elements considering the collective mobility of
other users, and static contextual information such as road
categories and the presence of points of interest.

Achieving a good prediction accuracy often conflicts with
the understandability of the predictive model. In difficult
settings, complex predictors such as deep neural networks can
achieve better performances than simpler ones like decision
trees, Bayesian classifiers, etc., yet, the formers are usually
not human understandable [15]. We aim not only to provide
good predictors for the car crash application but also extracting
risk mitigation guidelines for the user, which means we are
interested in understanding which factors made a driver a risky
one in order to propose changes in her behavior that can reduce
the risk. While that makes simpler models more appealing, we
also explore methods for “explainable AI” [3], [16], aimed to
extract explanations from not interpretable predictors. Finally,
since the various individual mobility models and predictors
are expected to be highly dependent on the geographical area
under study, we aim to test the transferability of the models
obtained through our approach from a region to another one,
which provides first insights for tackling a sort of geographical
instance of the general transfer learning problem [17].

We evaluate the proposed methodology on a dataset of
real cars moving in three different areas, namely two cities
(Rome and London), and one region (Tuscany, Italy). The
results show that the individual mobility-based and context-
aware approach we proposed improves performances over
basic solutions that use state-of-art features; also, the analysis
of predictions with explainable AI methods (in particular [18])
reveals that, indeed, most of the main factors that lead the
models to decide for the riskiness of users belong to the newly
introduced features.

The rest of the paper is organized as follows. Section II
summarizes related work on crash prediction and individual
mobility data models. In Section III we recall IMNs and
further concepts for understanding the interpretable model de-
signed for crash prediction described in Section IV. Section V
presents experiments in the form of a case study in which
we employ the proposed methodology. Finally, Section VI
concludes the paper and discusses next challenges.

II. RELATED WORK

The existing literature addresses the problem of crash pre-
diction from various perspectives, but, at the time of writing,
to the best of our knowledge, there are no existing works
exploiting mobility data analysis and user modeling for crash
prediction and risk assessment. Indeed, a large body of works
focuses on real-time prediction of individual crashes, i.e., try
to identify the events that lead to a crash in the next few
seconds, thus providing feedback to the user as she drives [19].

In [20] is developed a model for real-time collision detection
at road intersections by mining collision patterns. Similarly,
but using different data, [5] tries to relate crashes to both
behavioral characteristics and physiologic parameters. Other
approaches work on identifying areas that show characteristics
usually associated with accidents, such as increased traffic
density, adverse weather conditions, etc., e.g., [4], [21], [22].
Besides features describing areas, the work in [23] also used
individual vehicular data of cars (speed and time headway)
passing through predefined detector stations for improving the
performance of a probabilistic model. In [24] it is presented a
review of the key issues associated with crash-frequency data
as well as strengths and weaknesses of similar methodological
approaches. While extremely useful, such approaches result
in being not applicable to fields like car insurance, where the
focus is in creating a general risk profile of the user, thus
implicitly involving the prediction of her crash risk in the long
run, such as few months in the future. Only a few, preliminary
works are available in this direction, e.g., [2] adopts machine
learning methods to predict driving risk on the basis of
simplistic features describing the users’ driving behaviors.

In order to improve the state-of-the-art in crash prediction,
the proposal of this paper takes into account several various
aspects, ranging from the driving behavior of the user to the
types of environment she usually traverses. In the following,
we briefly review the existing individual mobility data model.
In [7], the notion of mobility profile is introduced, which sum-
marizes the regular movements of a user. Such individual mod-
els are exploited in [25] for building an effective individual
and collective movement predictor. The work in [12] provides
a first definition of Individual Mobility Networks (IMNs), a
network-based representation that integrates locations, move-
ments, and their temporal dimension in a succinct way. In
contrast to other models that are tailored around very specific
objectives, IMNs have large applicability and allow several
different types of inference: detecting the purpose of trips [12],
simulating realistic mobility agendas [13], etc. In this work,
we aim at exploiting such kind of models, in particular, IMNs
for simultaneously integrating as much information as possible
in a single formalism and inferring from it mobility indicators
useful for predictive and prescriptive purposes.

An important collateral point is that the individual mobility
models and crash predictors are expected to be highly de-
pendent on the specific geographical area under study. For
instance, it has been empirically verified that the trip purpose
classifiers in [12] work very well in the geographical area
where they were extracted, but their performances dramatically
degrade if applied to areas with different characteristics. At
the same time, not all areas are equally well covered by data,
due to the non-homogeneous penetration of tracking devices,
making it challenging to build different models for different
areas from scratch. All this calls for methodologies that make
it possible to adapt models built in data-rich areas to less rich
ones, basically a geographical instance of the general transfer
learning problem [17]. The experiment section of this work
also includes preliminary results in this direction.



III. SETTING THE STAGE

In the following, we introduce the definitions of trajec-
tory [7] and individual mobility network [12], [13], useful for
understanding the rest of the paper. We adapt them to the
problem we are facing and the approach designed to solve it.

Definition 1 (Trajectory): A trajectory is a sequence t =
�p1, . . . , pn� of spatio-temporal points, each being a tuple
pi = (xi, yi, zi) that contains latitude xi, longitude yi and
timestamp zi of the point. The points of a trajectory are
chronologically ordered, i.e., ∀1 ≤ i < n : zi < zi+1.

Given a trajectory t we refer to its i-th point pi with the
notation t[i], and to its number of points with t.n. Also, we
indicate the longitude, latitude and timestamp components of
point t[i] respectively with the notation t[i].x, t[i].y, and t[i].z.

Definition 2 (Individual History): Given a user u, we define
the individual history of u as the set of trajectories Hu =

�t1, . . . , tn� traveled by u. Also, we denote with H
[a,b]
u the

subset of trajectories of Hu that occur in time interval [a, b],
i.e. H [a,b]

u = {t ∈ Hu | [t[1].z, t[t.n].z] ⊆ [a, b]}.
Given the individual history Hu of user u, we can extract

from Hu the individual mobility network (IMN) Gu. An IMN
describes the individual mobility of a user through a graph
representation of her locations and movements, grasping the
relevant properties and removing unnecessary details.

Definition 3 (Individual Mobility Network): Given a user
u, we indicate with Gu = (Lu,Mu) her individual mobility
network, where Lu is the set of nodes and Mu is the set of
edges. Given an aggregation operator agg, for each node l ∈
Lu we define the following functions:

• ω(l) = number of trips in Hu reaching location l;
• δ(l) = agg({durations of stops in l});
• ρ(l) = agg({arrival times of trips reaching l});
• πt(l) = agg({durations of trips reaching l});
• πd(l) = agg({lengths of trips reaching l});

Operator agg can return either a single value (e.g. median)
or a n-ple (e.g. average and standard deviation, or quartiles).
The same functions are also defined on edges (movements)
m = (li, lj) ∈ Mu in a similar way, this time considering
only trips that start from li and reach lj .

Nodes in Lu are locations that represent a group of stop
points, and similarly edges in Mu are movements that rep-
resent groups of similar trips between two locations. The
computation of an IMN Gu starts from the history Hu of
user u, obtaining the locations Lu through a spatial clustering-
based aggregation of stop points (in particular, the TOSCA
algorithm [10]) and a trajectory clustering of the trips between
any pair of locations [13].

IV. CAR CRASH PREDICTION

In this section we formalize the car crash prediction prob-
lem, describe the methodology developed to solve it by means
of individual, collective, and contextual features of the user’s
driving behavior.

A. Problem Formulation

We define the crash prediction problem in terms of associat-
ing with the recent historical mobility of a user the probability
of having an accident in the next time period. The duration
of the user’s history to consider and of the next time period
for which we make predictions are two fixed parameters. As
mentioned in the introduction, reasonable durations for the
context at hand will have the scale of one or more months.

Definition 4 (Crash Prediction and Risk Assessment): Given
the following three parameters: prediction time τp, history
depth τh and prediction span τs, we define the two time
intervals z̄p = [τp − τh, τp], named predictors interval, and
z̄t = (τp, τp + τs], named target interval. Then, the crash
prediction problem consists in evaluating if user u will have a
car crash during period z̄t and what is the crash probability,
based on the analysis of the user’s mobility during period z̄p.
More formally, we want to estimate:

pcrash(u) = P (u has crash in z̄t | H z̄p
u )

The period z̄p represents the knowledge we have about the
user at the moment of assessing her risk, while z̄t is where
the crash to predict will or will not happen.

B. General approach

Our approach consists in approximating the probability
pcrash(u) in our problem definition in two steps: (i) first,
the knowledge contained in H

z̄p
u is represented through a

set of meaningful yet (necessarily) lossy features, that will
be discussed in details in the next sections; then, (ii) the
probability function is learned through data-driven models, in
particular, standard machine learning predictors.

User’s features. We model each user u with a vector of
m features computed over her predictors interval: x

z̄p
u =

�f1, f2, . . . , fm�. We name X z̄p = �xz̄p
1 , x

z̄p
2 , . . . , x

z̄p
n � the

matrix of n vectors describing the behavior of n users. We
indicate with yz̄t the vector saying if a user has experienced
a crash in the target interval z̄t, i.e., yz̄tu = 1 if user u had a
car crash in period z̄t, yz̄tu = 0 otherwise.

Machine Learning models. Given X z̄p and yz̄t , we train a
machine learning classifier and we obtain as output a car crash
predictor function pcrash(·). The crash predictor takes as input
a vector x

z̄�
p

u , describing user u’s mobility in a given predictors
interval z̄�p, and returns the probability she will have a crash
in the corresponding target period z̄�t, based on the training
performed on X z̄p and yz̄t .

As machine learning classifiers we considered several possi-
ble options, including k-NN classifiers, Naive Bayes, decision
trees, support vector machines, feed-forward neural networks,
random forests, etc. Indeed, any prediction model working
on standard tabular data could be in principle applied, since
the specificities of the data domain are already captured by
the user’s features x

z̄p
u . In this paper, through preliminary

experiments, we decided to adopt a random forest method,
since it yielded the best and most stable results. The case
study in Section V are based on that model.



TABLE I
TRAJECTORY-BASED FEATURES. ALL FEATURES ARE COMPUTED ON THE
WHOLE PERIOD, PER DAY-OF-WEEK, AND TIME OF THE DAY (MORNING,

AFTERNOON, ETC.). EACH INDICATOR IS AGGREGATED THROUGH COUNT,
SUM, MEAN AND STANDARD DEVIATION.

Name Description
nbr traj number of trajectories
length trajectory length in km

duration trajectory duration in sec
speed trajectory speed in km/sec

TABLE II
EVENT-BASED FEATURES. ALL FEATURES ARE COMPUTED ON THE

WHOLE PERIOD, PER DAY-OF-WEEK, AND TIME OF THE DAY (MORNING,
AFTERNOON, ETC.). EACH INDICATOR IS AGGREGATED THROUGH COUNT,
SUM, MEAN, AND STANDARD DEVIATION. IN ADDITION, EACH FEATURE

IS CALCULATED IN TOTAL AND DIVIDED BY TYPE OF EVENT: HARSH
ACCELERATIONS, HARSH BRAKING, HARSH CORNERING, MULTIPLE

CORNERING, STARTS, AND STOPS.

Name Description
nbr events number of events
duration event duration in sec
avg acc average acceleration during the event in km/sec
max acc maximum acceleration during the event in km/sec

angle angle of the event

Since an additional objective of risk assessment is to find
the possible factors that lead to a crash (whatever the nature of
each factor, either causal or simply correlated), we adopt two
ways to infer the role played by each feature in the classifica-
tion. The first one comes as a built-in feature of random forest
algorithms, namely the feature importance score, which says
how much important is overall a feature, though not describing
if that is a positive or negative factor. The second way exploits
recent results in the explainable AI domain, in particular, the
SHAP method [18], which assigns the positive/negative impact
of each feature on every single prediction, allowing to make
both single-user and collective considerations.

The core of this work lies in the user modeling enabling
the classification, i.e., translating the raw yet potentially deep
mobility information contained in H

z̄p
u into a set of features

�f1, . . . , fm� able to capture its significant elements, and in
particular those useful for crash prediction. In the following,
we illustrate the features used to describe the user’s mobility.

C. Trajectory-based features

Position-based features. These features characterize a user
using classic indicators of the trajectories and aspects describ-
ing them, i.e., length, duration, and speed. Each indicator
is aggregated through four operators: counts, sums, means,
and standard deviations. Moreover, aggregates are computed
over several time periods: morning (6am - 12am of all days),
afternoon (12am - 6pm), evening (6pm - 10pm), night (10pm -
6am). This leads to all the combinations �indicator, aggregate
type, time period�, whose list is summarized in Table I.

Event-based features. Several mobility data sources also
contain information about events of various types, detected by
the device. They are usually related to acceleration and direc-
tion, or to events happened within the device (e.g., receiving

Fig. 1. Temporal evolution of a IMN computed over 2–months periods;
changes in mobility are clearly visible.

a call, in case the device is a mobile phone) or onboard (e.g.,
a maintenance warning or an action the user made on the car
dashboard, in case of vehicles). In our approach, we include
this kind of auxiliary information, counting their occurrences
or aggregating their associated measures where available, e.g.,
the acceleration magnitude.

In this paper we make use of acceleration-based events
since they were available in the dataset used for experiments
(see Section V-A), yet this can be extended or reduced
depending on the data source at hand. Currently, we consider
the following events: harsh accelerations, harsh braking, harsh
cornering, multiple cornering, vehicle switch-on (start), and
switch-off (stop). For each event, it is available the acceleration
magnitude (an average computed by the device), maximum
acceleration, angle, and duration. The complete list of features
is summarized in Table II.

D. IMN-based Mobility features

The Individual Mobility Networks introduced in Section III
provide a higher level of aggregation of the user’s mobility,
also highlighting regular locations and trips. This useful struc-
ture is used here to extract three different types of information:
(i) the network properties of the IMN, (ii) mobility aggregates
focused on high-frequency locations and movements, and (iii)
measures of stability in time of the IMN.

Network properties. Network topological measures [26]
reveal general properties of the structure of an IMN. For
instance, we included the network diameter, helping to un-
derstand if the network is compact or it has peripheral nodes
very indirectly connected to the others; centrality of the
most frequent locations (e.g., home and work), showing how
much the mobility converges around them; and the clustering
coefficient, describing the tight connectivity of the network.

Mobility information on the IMN. This category includes the
geographical dispersion of the mobility (radius of gyration),
and mobility statistics on nodes and along edges, such as the
number of events that happen on a frequent movement (daily
routine trips) or while reaching a frequent location (home,
work, etc.). These provide a focused perspective of the general
information computed for trajectory-based features.



TABLE III
IMN FEATURES, DIVIDED BY TYPE. STARRED FEATURES (*) WERE

COMPUTED BOTH ON ALL THE NETWORK AND FOCUSED ON FREQUENT
LOCATIONS. li AND lj ARE THE MOST FREQUENT LOCATIONS l1, l2, l3 .

Network features
nbr locations number of locations (nodes)*

nbr movements number of momvements (edges)*
avg degree average degree, indegree, outdegree

density graph density
triangles number of triangles in graph
clus coef graph clustering coefficient
diameter graph diameter

eccentricity graph eccentricity
assortativity graph assortativity
li count location i count
li degree location i degree

li centrality location i centrality
li, lj count movement i-j count

li, lj betweennes movement i-j betweennes

Movement and Events on IMN
radius radius of gyration*

movement stats avg/std movement length/duration
li events location i events

li, lj events movement i-j events

IMN evolution
Δ locations number of locations variation *
Δ radius radius of gyration variation *

loc jaccard Jaccard coefficient between locations
loc cosine Cosine similarity between locations

mov jaccard Jaccard coefficient between movements
mov cosine Cosine similarity between movements

IMN evolution. Given two distinct time intervals z̄1 and z̄2
of the same duration, we can expect that some characteristics
of the user’s mobility remain invariant in the two periods,
while others might change. This can provide a perspective
on what (and how much) the mobility of the user is stable.
A real example is provided in Figure 1, where the IMN of
a user is computed on two consecutive 2-month periods and
shown over a map. It can be seen that some locations and
frequencies (represented by node sizes) remain stable, while
others appear/disappear (e.g., the novel North-East frequent
location) or change of frequency. The measures of temporal
change of the IMN that we adopted focus on general properties
of the network, namely the number of locations and the
radius of gyration, and the composition and frequency of the
locations. The time intervals z̄1 and z̄2 used in the experiments
(Section V) have a size of one month, z̄1 covers the earliest
part of the historical data used to compute features (z̄p) and z̄2
covers the most recent one, yet different settings are possible.

E. Capturing the Mobility Context

It is intuitively clear that the risk of crash might depend on
the context where the user drives. For instance, traversing areas
with chaotic traffic is expected to increase the risk of accidents.
In addition, driving habits that might abstractly make her a
risky driver, such as showing high acceleration rates and high
speed, could actually be considered normal if they happen in
areas of the city where that is the common behaviour.

TABLE IV
COLLECTIVE AND CONTEXTUAL FEATURES. ALL FEATURES ARE

COMPUTED BOTH OVER ALL LOCATIONS OF THE USER AND DIVIDING
FREQUENT ONES FROM OCCASIONAL ONES.

Name Description
nbr traj start number of trajectory starting
nbr traj stop number of trajectory stopping

nbr movements number of trajectory passing by
avg speed average trajectory speed

nbr crashes number of crashes
nbr events number of events

avg acc average acceleration during the event
max acc maximum acceleration during the event

avg speed average speed during the event

Fig. 2. Geographical areas covered by the data under investigation: Tuscany
and Rome in Italy (left), and London in UK (right).

The geospatial context information mentioned above is very
difficult to find in existing data sources. For this reason,
we computed some estimate contextual indicators directly
from the mobility data, by extracting collective aggregates
from the history of all users in the dataset. The process
starts by defining a spatial partitioning of the geographical
area into small sections. This has been performed through a
recursive quadtree division driven by a dataset of Points-of-
Interest1 (PoI), obtaining finer-resolution partitions in areas
with many PoIs (deemed to be more hot and thus more
interesting) and coarser ones where they are scattered, e.g.,
in rural areas. Alternative approaches as regular grids or
using administrative boundaries are possible. The second step
consists in associating to each geographical section all the data
points it contains, computing several aggregates on top of them
that characterize the section. In particular, we computed the
number of events (including stops and starts), average speed,
and acceleration statistics. In the last step, for each user, we
consider the geographical sections she stopped in at least once,
and compute an average of each characteristic of the sections.
The same process is repeated considering only the frequent
locations. The complete list is in Table IV.

V. EXPERIMENTS

In this section we present a case study on a dataset of
private cars in which we employ the proposed methodology2.
We first introduce the dataset, and then summarize the results
obtained on the crash prediction problem, with a comparison

1In our experiments, the OpenStreetMap database was used.
2The source code is available at: LinkAvailableAtCameraReady. The dataset

is not publicly available.



between our solution and some baselines. Finally, we analyze
the predictions returned by the model, trying to infer general
useful hints for improving personal driving behaviors.

A. Dataset Description

The dataset considered in our experiments were provided by
OctoTelematics3, and covers three geographical areas (see Fig-
ure 2), representing three different situations to be considered
in the analyses: a very large city (London, UK), a moderately
large city (Rome, Italy), and a whole region, composed of
variable-size cities (Tuscany, Italy).

The raw mobility data consists of anonymized GPS traces of
vehicles of car insurance customers, containing the following
information: (i) a list of GPS timestamped positions (latitude
and longitude); (ii) a list of events in the form of timestamped
position data enriched with labels describing events such as
harsh acceleration, harsh braking and (possibly multiple) harsh
cornering, with additional accelerometer metrics related to
each event position. These data are collected whenever the
accelerometer detects an acceleration exceeding predefined
parameters; (iii) a list of crashes in form of timestamped po-
sition data related to crash events. Such events were originally
detected through algorithms and later filtered by a human
operator. The dataset is collected at an average rate of one
position every 1.5 minutes, though there are some exceptions.

B. Experimental Setting

Time-wise, in our experiments we consider different
time periods, corresponding to prediction times τ1p =
end of March, . . . , τ9p = end of November. The corresponding
experiment periods z̄i are obtained by fixing the history depth
τh to 3 months (used to compute features) and prediction span
to 1 month (the period where crashes are checked). Instead,
geographically speaking, we have the three different areas
r ∈ {Rome,London, Tuscany}, and we analyze the data of
about 5000 drivers from each of them. We run the experiments
in three different experimental settings, depending on how we
consider the temporal and geographical components. In the
first setting (S1) we keep separated each experiment period
z̄i and each spatial region r from all the others. In particular,
for each given pair (z̄i, r) we train a classification model over
the corresponding data of all the users in r, namely Xzi,p

and yzi,p , and then use the model to make predictions one
month later, i.e., it is applied over Xzi+1,p and the results
are compared against the ground truth in yzi+1,p . Notice that
we must have i + 1 ≤ 9, therefore we obtain a total of
|{τ ip}| × |{r}| = 24 sets of experimental results. In the
second setting (S2), we still keep regions separated, while all
experiment periods are considered together. Users are split into
a training set and a test set, following a hold-out division4, all
the 9 experiment periods of a user in the training set are used
(as 9 separate records) in the model training and, similarly, all
the 9 experiment periods of a user in the test set are used for
the model testing. Notice that, while in S1 we check if we can

3www.octotelematics.com
4Cross-validation was also tested, yet results remains basically the same.

predict the crash of observed users in the near future using a
limited amount of data, in S2 we try to predict the crash of
unobserved users using a consistent amount of data but without
a temporal reference. Finally, the third setting (S3) amplifies
the effects obtained by S2 by putting the users of different
areas in a unique training dataset.

C. Dataset Preparation

Before training the classifiers, we face two problems with
the datasets analyzed in the various settings. The first one is
a class imbalance issue. Indeed there is a very low number of
crashes compared to the number of no crashes with an average
number of crashes of 3.12% in Tuscany, 1.08% in London,
and 2.82% in Rome. We tackled this problem by adopting the
SMOTE oversampling approach [27]. The minority class is
over-sampled by taking minority class samples and introducing
synthetic examples along the line joining the k minority
class nearest neighbors. Depending upon the amount of over-
sampling required, neighbors from the k nearest neighbors are
randomly chosen. We adopt k = 5 by default as suggested
in [27]. The effect of adopting SMOTE is to improve class
balance and to reinforce the presence of the minority class
in the decision regions where it appears. We highlight that
we re-balance only the training datasets and not the test ones
making the evaluation harder but more realistic. The second
problem is the high dimensionality of the datasets analyzed in
various settings. Indeed, the rich data engineering described in
the previous sections leads to the construction of more the 400
features, some of them being highly correlated and redundant.
This high dimensionality can cause difficulties in the learning
of classification models. Thus, we adopt a dimensionality re-
duction technique based on correlation analysis. We calculated
the Pearson correlation coefficient [28] between every pair
of features for the various settings. Then, we removed one
attribute for each couple having a correlation higher than 0.85.
In our experiments, this operation reduced the dimensionality
to 162 features, with a balanced presence of trajectory-based,
event-based, IMN-based, and contextual features.

D. Evaluation Measures

The objective of crash prediction is to highlight future risky
and potentially harmful events, also with the aim of raising an
alarm that might help to prevent them. From this perspective,
false positives are less critical than false negatives. To this
aim we use as main evaluation guidelines [28] the recall of
the positive class (rec1), i.e., aiming to find as many risky
drivers as possible, and the precision of the negative class
(pre0), i.e., aiming to raise no alarm only if we are confident
the user is not risky. We account for both aspects considering a
weighted f1-measure, i.e., the harmonic mean of precision and
recall of the positive class weighted with respect to number
of crashes (f1 1), and the area under the roc curve (auc) of
the positive class that is the area under the curve comparing
the false positive rate (FPR) and true positive rate (TPR). All
measures range from 0 to 1, 1 being the optimum.



TABLE V
ROME: AGGREGATED MEASURES OF PERFORMANCE IN TERMS OF MEANS

AND STANDARD DEVIATION OVER DIFFERENT PERIODS FOR S1.

Model pre0 rec1 f11 auc crash %
CST .000 ± .00 1.000 ± .00 .024 ± .01 .500 ± .00 1.000 ± .00
RFI .847 ± .36 .877 ± .10 .149 ± .08 .588 ± .05 .848 ± .11
RFP .704 ± .46 .891 ± .08 .140 ± .07 .574 ± .03 .860 ± .10
RND .975 ± .02 .486 ± .05 .352 ± .02 .500 ± .00 .502 ± .01

TABLE VI
TUSCANY: AGGREGATED MEASURES OF PERFORMANCE IN TERMS OF

MEANS AND STANDARD DEVIATION OVER DIFFERENT PERIODS FOR S1.

Model pre0 rec1 f11 auc crash %
CST .000 ± .00 1.000 ± .00 .025 ± .01 .500 ± .00 1.000 ± .00
RFI .702 ± .48 .992 ± .01 .056 ± .04 .719 ± .05 .968 ± .04
RFP .425 ± .53 .992 ± .01 .042 ± .03 .577 ± .04 .983 ± .03
RND .973 ± .02 .488 ± .03 .355 ± .01 .500 ± .00 .498 ± .01

E. Crash Prediction Evaluation

We experimented with different classifiers to account for
performances, yet also considering their interpretability. Sim-
ple and partially interpretable decision tree and k-NN clas-
sifiers fail in reaching acceptable performances, while Ran-
dom forests (RF) performances overcome those of multi-layer
perceptron algorithms, making RF the best candidate. In the
following, we report the results obtained using RF classifiers
with 100 estimators, i.e., 100 trees in the forest, allowing
leaves with at least 1% of the training data, and with a cost
matrix weighting a crash 100 times more than a no crash.
We show the effectiveness of our approach by comparing
against three alternative approaches. The first two are simple
baselines: a constant classifier (CST) always returning the
relevant class (crash); a random classifier (RND), predicting
uniformly ad random crash or not crash. The third one, instead,
adopts a RF using only features from the state-of-the-art
literature of crash prediction (RFP), such as average speed,
number of trajectories, number of breaks, etc. Our proposed
classifier (RFI) improves over RFP by extending the classical
features used in literature with the much more sophisticated
IMN-based and contextual features described in Section IV-B.

Tables V, VI, VII report the result for S1, showing the
evaluation measures previously classifiers and the percentage
of crashes returned by the classifiers for Rome, Tuscany, and
London areas, respectively, averaged among the various peri-
ods. Table VIII reports the same indicators for the experimen-
tal settings S2 (first three rows) and S3 (last row). The overall
results we observe in the various settings and tables are the
following. The simultaneous analysis of the reported indicators
shows that RFI provides the best and most reliable perfor-
mances. Indeed, the CST baseline obviously has the highest
recall but a zero precision on no crashes, making it useless for
practical usage. On the other hand, RND easily gets a high
precision of no crashes, thanks to the high imbalance of data,
but it loses half of the effective crashes with a recall of less
than 0.5. RFP gives a better trade-off between precision and
recall than CST and RND, but shows a very high number of

TABLE VII
LONDON: AGGREGATED MEASURES OF PERFORMANCE IN TERMS OF

MEANS AND STANDARD DEVIATION OVER DIFFERENT PERIODS FOR S1.

model pre0 rec1 f11 auc crash %
CST .000 ± .00 1.000 ± .00 .009 ± .00 .500 ± .00 1.00 ± .00
RFI 1.000 ± .00 .994 ± .01 .574 ± .02 .962 ± .01 .086 ± .01
RFP .994 ± .00 .719 ± .10 .308 ± .05 .612 ± .04 .572 ± .10
RND .991 ± .00 .499 ± .08 .341 ± .00 .500 ± .00 .501 ± .01

TABLE VIII
PERFORMANCE FOR DIFFERENT AREAS FOR S2 (TOP) AND S3 (BOTTOM).

area model pre0 rec1 f11 auc crash %

London

CST .000 1.00 .010 .500 1.00
RFI 1.00 1.00 .580 .955 .087
RFP .992 .624 .329 .574 .533
RND .990 .489 .344 .500 .495

Rome

CST .000 1.00 .028 .500 1.00
RFI .985 .882 .216 .619 .776
RFP .978 .866 .180 .586 .822
RND .972 .500 .361 .500 .493

Tuscany

CST .000 1.00 .029 .500 1.00
RFI .993 .944 .243 .775 .745
RFP .973 .970 .061 .584 .967
RND .969 .480 .355 .500 .504

All

CST .000 1.00 .022 .500 1.00
RFI .999 .991 .206 .776 .787
RFP .975 .996 .025 .641 .997
RND .977 .485 .352 .500 .498

records returned as crashes and an auc just slightly better than
CST and RND, with a value around 0.6. On the other hand,
RFI always has similar or larger levels of precision and recalls
of RFP, and has systematically a higher auc, also labeling as
crashes a number of records consistently lower than RFP.

In the experimental setting S1 we observe different behav-
iors of RFI in the three different areas considered, and reported
in Tables V, VI, and VII. In London, the RFI classifier labels
as crashes only the 8% of the records in the test sets against
the 84% and 97% in Rome and Tuscany. However, it has at the
same time the highest pre0, rec1, f1 1, and auc. Notice that
the other methods considered show much worse results. In
other words, the new features introduced in this paper appear
to make crashes easy to predict in London. Understanding the
reasons for this effect is part of our future works.

The results for S2 and S3 are reported in Table VIII. We
observe how the increased number of available records for the
training leads to a not negligible improvement in the perfor-
mance of the classifiers for S2 in the Rome, Tuscany, and Lon-
don areas when compared to those in Tables V, VI, and VII. In
addition, the setting S3 that puts together records from all the
different areas (All rows in Table VIII) leads to a classifier
even better than those resulting from S2. We highlight in
Figure 3 the Receiver Operating Characteristic (ROC) curve
of the classifiers for the experimental setting S2 for Rome,
Tuscany, and London, and S3 for all the data records. These
plots show the evidence that London classifiers are much more
accurate than the others and that RFI classifiers markedly
benefit from the usage of IMN-based and contextual features
with respect to RFP, whose ROC curve is always below.



Fig. 3. Receiver Operating Characteristic (ROC) curve for different areas for
S2 (London, Rome, Tuscany) and S3 (All).

TABLE IX
MODELS TRANSFERABILITY IN TERMS OF PERFORMANCE OF A

CLASSIFIER IN AN AREA DIFFERENT FROM THE ONE USED FOR LEARNING.

model area pre0 rec1 f11 auc crash %

London Rome .971 .000 .493 .500 .000
Tuscany .970 .000 .492 .501 .000

Rome London .996 .722 .431 .772 .309
Tuscany .977 .692 .317 .561 .601

Tuscany London .997 .767 .473 .864 .217
Rome .976 .915 .120 .566 .899

All
London .999 .977 .295 .874 .615
Rome .993 .980 .109 .615 .915

Tuscany .989 .886 .269 .770 .701

F. Model Transferability

We stress the classifiers of S2 showing which are their
performance when applied on data records of areas not used
for learning. Similar results are obtained for S1, not reported
here for better readability. Table IX reports the performance
of the classifier trained on London when applied to the Rome
and Tuscany test sets, the performance of the classifier trained
on Rome when applied to London and Tuscany test sets, etc.
We observe that the London classifier is not able to label any
driver as possible crash, showing that it captures very local
(and locally very effective, as seen in the previous section)
aspects of the London crash patterns. Moreover, both the Rome
and Tuscany classifiers succeed in finding crashes in London
even though with a recall lower than the one of the classifiers
trained specifically on it. Hence, it seems that learning to detect
crashes in London is easier than other areas (at least with
IMN and context features). On the other hand, the Tuscany
and Rome classifiers are quite interchangeable having a high
transferability between them. The bottom row of the table
shows that a classifier trained on all the datasets in S3 has
similar performances over all areas, suggesting that the area
of learning is the main factor affecting the model behavior.

Fig. 4. Feature importance of the classifiers for two areas of S2 (Tuscany and
Rome). Plots for Rome and the whole dataset are omitted for space limitation.

G. Risk Assessment Analysis

Besides building a reliable car crash predictor in terms of
performances, the objectives of this work include the risk
assessment analysis aimed to understand which behaviors in
a driver more likely could lead to future crashes. We can
accomplish this task by extracting from the trained classifiers
the knowledge describing different driving profiles associated
with the users that are more prone to have future crashes.

Since we are adopting RF classifiers, we can easily extract
the feature importance computed as the (normalized) total
reduction of the error brought by a certain feature (also known
as the Gini importance [28]) for each decision tree in the
forest, averaging among the values obtained from each tree.
We report examples of these values for S2 Figure 4. These
plots provide a first idea of which are the most discriminating
features, yet not helping in understanding the specific role
played by each feature or the reasons for the model decisions.

To overcome these limitations, we adopted methods brought
from the “explainable AI” field [3], in particular, the SHapley
Additive exPlanations (SHAP) method [18]. SHAP connects
game theory with local explanations based on feature im-
portance. In particular, it exploits the Shapely values of a
conditional expectation function of the classifier to explain
(in our case, the crash predictor), providing the local unique
additive feature importance for each specific record. The
higher is a shapely value, the higher is the contribution of
the feature. If the shapely value is positive, it contributes
towards the positive class (crash). Otherwise, it contributes
towards the negative class (no crash). In Figure 5, we report
the shapely values for the records in the test set classified
as crash by the classifier learned in S3, using the force plots
introduced in [29]. Every colored line represents a feature,
each horizontal position is a different user, and vertical values
show the feature contribution to the classification. Features
pushing the prediction towards crash are shown in red, those
pushing the prediction towards no crash are in blue. The
purpose of this Figure is to show that there are clusters of
similar records classified as crashes for different reasons.

We retrieve these different clusters (and thus the different



Fig. 5. Shap values of the records in the test set for the classifier learnt in S3. Every colored line represents a feature, each horizontal position is a different
user, and vertical values show the feature contribution to the classification. Features pushing the prediction towards crash are shown in red, those pushing the
prediction towards no crash are in blue. (Force plots introduced in [29])

reasons they represent) by adopting the following procedure
we propose for risk assessment analysis. Given the shapely
values computed for a set of records, we cluster them using a
centroid-based approach. We adopted K-Means and observing
the Sum of Squared Error (SSE) distribution we selected k =
10 as the number of clusters. Then, for each cluster, we select a
medoid, i.e., an element representing the cluster that minimizes
the distance between all the other records in the cluster in
terms of shapely values. Finally, we report the shapely values
of these prototypes as profiles of users with a probable crash
with an indication of the reasons for the crashes. Due to space
constraints we only report in Figures 6 and 7 three prototypes
for S2 Tuscany and S3 respectively.

An analysis of the prototypes confirms that IMN-based
features and collective features are fundamental for detecting
crashes. Indeed, the average maximum acceleration of break
events in areas visited occasionally performed by other users is
crucial in pushing towards crash in Tuscany for the three pro-
totypes reported. With respect to the classifier returned by S3,
the prototypes reveal that a high Jaccard of movements among
different IMNs (i.e., high temporal stability in movement
routines) pushes the decision towards crash. Another feature
having this effect is the number of acceleration and break
events between the second and third most visited locations.

VI. CONCLUSION

In this paper we introduced and tackled the (long-term)
car crash prediction problem and its associated task of risk
assessment. The solution proposed consists in extracting so-
phisticated features of the user that capture not only basic
characteristics of her mobility, but also higher-level informa-
tion derived from a network view of her mobility history
as well as contextual knowledge directly inferred through
analysis of the collective data of all users. On top of such
features, many standard machine learning models can be used,

among which Random Forests proved to be the most promising
for this application. Experiments on real data showed that
our solution outperforms basic solutions based on state-of-art
features, and a preliminary inspection of the prediction models
through explainable AI methods allowed us to identify a few
representative features associated with crash risk.

Ongoing and future works on this line of research include
an extension of all the steps of the proposed solution. The
IMN representation could be refined by annotating trips and
locations with their purpose [12], by recognizing driving
moods (e.g., through unsupervised analysis of speeds and
accelerations, or driving through dangerous intersections [20]),
or by better describing the evolution of driving habits. Con-
textual data might be expanded, e.g., by including external in-
formation, such as the presence of POIs. Adaptation strategies
should be designed in order to make strong models built in one
area transferable to other places. Finally, the risk assessment
could be developed to better explain the predictions (e.g.,
using rule-based methods [30]) and infer actionable changes
in driving habits that might help the user exit the risk zone.
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