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Abstract

Car telematics is a large and growing business sector aiming to collect mobility-related data (mainly private and commercial
vehicles) and to develop services of various nature, such as supporting car insurances, info-mobility services, etc. In this work we
briefly report some of the challenges that a car telematics demonstrator is facing within the EU project “Track and Know”,
describing the overall context, the available data sources, the business goals, preliminary results and ongoing lines of research. In
particular, the demonstrator will address new services for car insurance, electric vehicles mobility and car- and ride-sharing.
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1. Introduction

Mobility  data  generation  and  analysis  is  at  the  core  of  the  business  of  many  mobility–related  companies,
including car  insurances  and associated  technology providers.  Indeed,  providing fresh and detailed information
about the mobility of vehicles and single users can be fundamental in optimizing services. This is the case for car
insurances, where a good knowledge of the driving attitude of the customer allows to identify the most appropriate
contractual conditions, typically associated with the risk of causing accidents. Indeed, risky customers create risks
both for their safety and for the car insurance profit, and the best customers for car insurance providers are indeed
the safe ones. For this reason, in the long term the business objectives of the company should include not only
identifying the risky subjects, but also providing them useful feedbacks to correct their risky behaviours. Similarly,
services aiming at supporting alternative transportation solutions, such as car pooling or electric vehicles, require to
know which kinds of mobility needs the user has, and then infer what kind of changes to her daily routines are
needed to fit the requirements of the new solution. In case of car pooling, that means aligning with the mobility of
other users; in the case of electric vehicles, we have to take into consideration the limited autonomy of current
batteries, the relatively low availability of recharging points, and the relatively long recharge times.

In this paper we summarize the objectives and the challenges of a pilot demonstrator of the EU project Track and
Know in the car telematics sector, mainly addressing services and applications in the three areas mentioned above:
car insurance, electric vehicle mobility and shared-mobility. 

In the next sections we briefly present the characteristics of the demonstrator, the technical challenges to face,
and some preview of preliminary results on the research directions discussed.
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2. The Car Telematics demonstrator

2.1. Car telematics core business

The Car telematics core business is to collect data from telematics devices and develop advanced solutions and
algorithms for  sophisticated  data  analysis,  in  order  to  help  insurance  companies  assessing the  insurance  risks,
provide  services  for  the  management  of  accidents,  and  to  facilitate  communication  between  companies  and
customers. Furthermore, an increasing number of car telematics companies provide services to car manufacturers,
the main activities being the following: developing statistics algorithms on individual driving styles and habits, help
the car manufacturer  to create custom warranty programs derived from driving behavior and offer  personalized
services to its own customers.

2.2. Data sources for the car telematics demonstrator

The main information sources involved in this demonstrator are the following, provided for a large set of private
vehicles:

 Positions:  a  list  of  timestamped  WGS84  GPS  position  (latitude  and  longitude)  related  to  anonymized
vehicles (via anonymous IDs) with an additional labelling about the vehicle travelling status, the satellite
connection status and the cardinal orientation of the car. 

 Events: position data (as above) enriched with threshold-base labels describing motion events occurring in a
given times stamp, such as harsh acceleration, harsh braking and (possibly multiple) harsh cornering, with
additional accelerometer metrics related to each event position. 

 Crashes:  position data (as above) related to crash events with additional  accelerometer  metrics (tri-axial
average and tri-axial maximum accelerations).

 Car models:  a list of registries about car age, brand and model, related to the anonymous vehicle IDs.

The data for the demonstrator covers three geographical areas (see Figure 1), representing three very different
and important situations to be considered in the analyses and services:

 A very large city (London, UK)
 A moderately large city (Rome, Italy)
 A whole region, composed of variable-size cities (Tuscany, Italy)

Fig. 1. Geographical areas covered by the data employed in the demonstrator

Also, the data provider has different penetration indexes in the two countries involved (the difference is an order
of  magnitude),  thus  providing  a  natural  testbed  for  analysis  tools  over  heterogeneous  data  richness,  including
transfer learning issues.
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3. Business objectives of the demonstrator

We divide  the  discussion  into  the  three  main  application  areas  of  the  demonstrator:  car  insurance,  electric
mobility, shared mobility.

3.1. Car insurance

Car insurance is one of the most important application fields of car telematics, and the movement data collected
by the latter is typically used to provide several services to end users, such as pay-as-you drive contracts, anti-theft
control and prompt emergency rescue in case of accidents. 

A fundamental task of car insurance companies is to find the most appropriate policy pricing for a customer,
which consists in a trade-off between profit and competitiveness. The most intuitive way to do it is to estimate the
customer’s risk of having accidents in the near future, since high-risk ones are likely to cause the company a loss
(paying the costs of her accidents) while low-risk ones are more likely to provide a plain profit. This business case
stems from this idea.

The basic objective is not only to recognize the real risk level of a customer, but also to understand possible
causes. Therefore, we aim to two distinct results:

 Predicting the Customer’s risk score: given a car insurance customer, provide a risk score relative to the
near future, e.g. the next year or the next three months. We expect this estimate to be greatly dependent on
how the customer drives and the conditions of the surrounding environment (traffic, etc.).

 Inferring risk mitigation strategies: given a car insurance customer and her risk score, we would like to
identify the characteristics of her driving that mostly determine her risk score. From a prescriptive viewpoint,
that will provide the customer indications of how to improve her risk score, with benefits for her (in terms of
safety and insurance costs) and the insurance company (in terms of costs for accidents).

As the raw mobility data collected by car telematics companies is limited to positions and events of the vehicle,
with no vision of what happens around it, it is clear that in order to achieve our main goals we need to add some
information about the context. That means enriching raw data with external data sources, such as weather conditions
and traffic status, or inferring characteristics of the territory from the mobility data itself.

Similarly, the raw mobility data describes elementary events (position, acceleration, etc.) whereas any proper
modeling requires a higher-level vision of what is happening to the user. Such higher-level ones should provide
some clear semantics, e.g. some typical maneuvers that involve sequences of deviations, sudden decelerations, etc.
Recognizing and making them explicit is expected to be an important need.

Finally, the data involved in this business case imposes several access restrictions that inhibit the end-user of
applications  to  directly  access  them.  The  motivations  for  such  restrictions  range  from  individual  privacy  to
competitive  advantage  of  the  data  provider.  Therefore,  in  order  to  make  the  solutions  developed  practically
applicable in an industrial scenario the following important requirement emerges: the data processing that starts
from the raw data and terminates  with the final  results must work essentially  unmanned,  i.e.  without the user
interacting or accessing anything but highly aggregated data, e.g. the final risk scores and associated mitigation
strategies.

3.2. Electric mobility

While the EVs industry and their adoption is expanding in most EU countries, the switch from fossil fuel to EVs
still suffers from a lack of a clear understanding of the pros, cons and habit changes that each user is going to
experience.  The overall  target  of this business case is  to provide objective,  data-driven means to measure such
aspects and let companies and individual users to evaluate the ease of conversion to EV mobility.

Electric mobility requires the development of new systems that are natively integrated with control, diagnostics
and vehicle connectivity systems. With the new systems under development there will be the possibility for each
driver to be able to monitor the performance of the electric vehicle with simple Apps, as well as allowing the use of
a lot of information on the status of the vehicle components (e.g. battery charge level, etc.) or to receive intelligent
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alerts during the event of inadvertent  interruption of the top-up, unexpected movement,  and access to real-time
positioning services or sharing of driving data. Furthermore, the growing spread of electric vehicles will also lead to
an evolution in the insurance world, since the components that make up electric vehicles, such as batteries, will also
be insured. The impact will also be significant in the long-term fleet rental sector, where the transition to electric
mobility will favor the spread of new business models, such as pay as you charge, always based on telematics.

The main focus of this demonstrator is on understanding the impact of EV switching on the individual:
 Estimate Costs/Benefits  of  EVs for  the  individual:  given  an  individual  customer  with  her  mobility

history, evaluate her costs or savings in terms of money and time in case of switching towards an EV. That
should take into consideration daily mobility needs, and therefore usual paths, as well as charging point
availability (with corresponding detours from the fastest trip) and charging times.

Such general goal will require to understand the mobility needs of the users both at the individual and at the
collective level, identifying the most frequent areas of interest or the most frequent or typical routes adopted, as that
can help assessing the relevance (weight) of the area or route for the main objective.

A key task involved is to derive the consequences of the limited autonomy and longer recharge times of EVs
compared  to traditional  vehicles,  since these two factors  might make some fossil  fuel-based trip impossible or
uncomfortable for an EV. Finding EV-compliant alternative routes for the travels of a user, possibly differentiating
among trips of different nature (systematic vs. occasional, long vs. short, easy to substitute with public transport vs.
others), and measuring their efficiency constitutes a starting point for the main objective.

3.3. Shared mobility  

Sharing vehicles  (either  through car-sharing or  by ride-sharing,  i.e.  using the user’s  private vehicle)  is  a  basic
measure to reduce traffic congestions, the derived environment footprint, and the personal costs (fuel consumption
as well as maintenance costs).

Car-sharing is increasingly becoming a popular, flexible and affordable mobility solution that grows progressively
in the metropolis all over the world. It is a simple, ecologically sustainable and alternative paradigm of mobility,
especially from an environmental point of view, because it decreases the mean insurance and maintenance costs of
the car, especially in congested urban centers.

The  latest  research  in  the  area  of  Shared  Mobility  predicts  that  the  global  carpooling  market  will  grow at  a
compound annual growth rate (CAGR) of 8% from around 22 million users in 2017 to 47 million in 2025, with
more than 500,000 vehicles by 2025 (Frost and Sullivan 2016).

For this reason, car telematics companies are venturing into providing technological solutions for Shared Mobility
that also include advanced fleet management and insurance telematics for operators in the Mobility sector and for
rental companies.

Despite the clear difference between the two cases,  EVs mobility and vehicle/ride-sharing have several common
points. In particular, both of them would greatly benefit from a clearer understanding of the pros, cons and habit
changes that each user is going to experience when she joins it. The overall target of this business case is to provide
objective, data-driven means to measure such aspects and let service providers and individual users to evaluate the
ease of adoption of car-pooling and/or car-sharing.
We remark that studying car-pooling and studying car-sharing are rather distinct problems, yet they share a large
part of concepts and basic tasks, and therefore they are discussed here as a unique subject. 
Our main focus here is the following: 

 Estimate Costs/Benefits of car/ride-sharing for the individual: given an individual customer with her
mobility history, evaluate her costs or savings in terms of money and time in case of adoption of car/ride-
sharing. That should take into consideration daily mobility needs, and therefore the importance that each
trip has in the overall mobility demand of the individual.
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Synchronizing with other users (to travel together in the ride-sharing case, or to take the shared car in the other case)
usually affects  the efficiency  of  the travel  in terms of time delays and slight changes  in the itinerary.  Finding
car/ride-sharing  alternative  routes  for  the  travels  of  a  user  (maybe  focusing  on  the  most  relevant  ones)  and
measuring their efficiency constitutes a starting point for the main objective.

4. Technical challenges

The business cases described in the previous section present several challenges from the technical viewpoint,
since they mostly require a deep understanding of human mobility starting from raw data lacking any detailed
semantics. In this section we discuss some of the most important ones.

4.1. Preprocessing, or Dealing with data quality issues

The large-scale collection of mobility data inevitably brings several quality issues due to a number of causes,
yielding either imperfect records (for instance, due to GPS error or incorrect device configuration) or missing ones
(for  instance,  lost  data packages).  Trying  to  mitigate  such issues  requires  an  ad hoc  approach  that  studies  the
characteristics of the data sample at hand. In particular, several analyses require the reconstruction of trips out of
raw GPS points recorded for each device:  determining the start and end of each trip in a precise way requires
specific heuristics (e.g. Mousavi, S., Harwood, A., Karunasekera, S. et al. 2017); reconstructing the detailed path
(which roads were traversed) might require map matching and similar solutions; also, singling out noise and errors
of moderate size in the data (e.g. a distortion large enough to move a point over the wrong road segment, yet too
small to be spotted by visual inspection) can be very challenging.

4.2. Semantic enrichment

Adding  semantics  to  the  raw  data  and  its  aggregations  (e.g.  trips)  can  be  realized  either  joining  external
information, or inferring it from the data itself. Examples in the first case, already considered in the project, include
attaching to each GPS location the weather conditions, local traffic and points-of-interest around it. For the second
case we mention the identification of recurrent trips (see more in the next item of the list) or the spatial aggregation
of driving events aimed to identify areas were some specific behaviours are more frequent, e.g. bad road conditions
leading to frequent sudden decelerations.

4.3. Individual-centered mobility modeling

A specific  type of  semantics  is  related  to  the  meaning that  the different  parts  of  the mobility  have  for  the
individual: recurrent vs. systematic trips, frequent locations vs. single visit ones, transit locations vs. long stays, etc.
To infer this type of information we need to model the mobility of the individual as a whole, creating a single,
complete picture of it. This process is currently ongoing exploiting Individual Mobility Networks (Rinzivillo et al.
2014), a network-based representation that integrates important locations, movements and their temporal dimension
in  a  succinct  way.  Such  model  allows  several  different  types  of  inference  (detecting  the  purpose  of  the  trip,
simulating realistic mobility agendas, etc.), in contrast to others that are tailored around a specific objectives, e.g.
predicting  next  location  (e.g.  Amirat,  H.,  Lagraa,  N.,  Fournier-Viger,  P.  et  al.  2019).  Integrating  as  much
information  as  possible  in  a  single  formalism  and  inferring  from  it  mobility  indicators  useful  for  the
predictive/prescriptive purposes of the demonstrator are among the key challenges.

4.4. Prediction of (crash) risk probability

Risk in this context means probability of accidents, which are (in statistical terms) rare events. That, together
with the lack of a clear set of predictive indicators to adopt, make the risk prediction a difficult task. The approach
under development will take into consideration several aspects, ranging from the driving behaviour of the user to the
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types of environment she usually traverses – the latter includes both static information, such as road categories, and
dynamic ones, such as weather during driving time. 

4.5. From prediction to prescription 

Achieving a good prediction accuracy often conflicts with the understandability of the predictive model. It is well
known that in difficult settings very complex models (deep learning, large random forests, etc.) can achieve far
better performances than simpler ones (decision trees, Bayesian classifiers, etc.); yet, the former are usually not
human  understandable.  One  of  the  central  objectives  of  this  demonstrator  is  the  extraction  of  risk  mitigation
guidelines for the user (the driver), which means we are interested in understanding which factors made a driver a
risky one, in order to propose changes in such behaviours that can reduce the risk. While that makes simpler models
more appealing, the project will explore also methodologies coming from the “explainable AI” community, aimed to
extract from a black-box model an explanation for each prediction obtained, in particular the field of adversarial
learning that tackles similar problems – though with very different purposes. 

4.6. Models Transferability

The various types of mobility models involved in this demonstrator are expected to be highly dependent on the
specific geographical area under study. For instance, it has been empirically verified that the trip purpose prediction
models  proposed  by  Rinzivillo  et  al.  (2014)  work  very  well  in  the  areas  where  they  were  extracted,  their
performances degrade dramatically if applied to areas with different characteristics. At the same time, not all areas
of  interest  for  the  demonstrator  are  equally well  covered  by data,  due  to  the  non-homogeneous penetration  of
tracking devices, making it difficult to build different models for different areas. For instance, the penetration of
GPS vehicle trackers in UK is an order of magnitude lower than Italy, and other countries where this market just
started show even lower values. All this calls for methodologies that make it possible to adapt models built in data-
rich areas to less rich ones, basically a geographical instance of the general transfer learning problem (Pan and Yang
2009).

4.7. Defining proper notions of electrificability and shareability of individual mobility

Measuring how much the mobility of an individual is compatible with alternative transport modalities – in our
case, EVs and car sharing/pooling, both with their own constraints – is a not well defined problem. Existing work
measured the ratio of trips that are perfectly compatible with them (Guidotti et al. 2017, Janssens et al. 2012), but
without a more realistic evaluation of the effort required on behalf of the user to adapt her whole mobility. In the
case of EVs, that means changing times and routes to intercept charging stations when needed. Moreover, mobility
optimization might intersect energy distribution issues, including the balance of energy consumption on the grid or
how to use vehicles as potential distribution means; for car sharing/pooling, it means to change times of travels, or
even  reschedule  part  of  them.  Providing  such  definitions  and  the  tools  for  computing  their  values  is  another
challenge the project (and this demonstrator in particular) is going to pursue.

5. Preliminary results and insights on the data

This section summarizes some of the first insights and preliminary results obtained over the datasets adopted in
the demonstrator, and focused on the main demonstrator objectives and most promising analytical tools.

5.1. Mobility-based Characterization of Geographical Areas

Most analyses and models extracted from data are highly dependent on the characteristics of the territory under
study. In particular, it is known that mobility models extracted in one region might not work well in other ones, thus
raising an issue of transferring models across different areas. In this direction, the technical activities of the Track &
Know project are addressing the problem of characterizing different areas based on a wide variety of indicators, with
the aim of better assessing the similarity of different geographical areas (the idea being that models are more easily
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transferrable between similar areas) and possibly devise mechanisms to adapt models across areas with different
characteristics.

The initial exploration on this line considered the following families of mobility-based city indicators:
 Spatial  Concentration  of  population:  various  measures  of  concentration  are  computed  over  each  city,

including spatial entropy and Moran’s I, based on a fixed tessellation of the territory.
 Traffic flows distribution: starting from the traffic network among the sub-areas of a city, various indexes

are  computed,  such  as  the  modularity  index  (Newman  2006),  as  well  as  the  fitness  of  such  traffic
distribution with standard mobility models like the gravitational model (IZA World of Labor 2016).

 Distribution of IMNs properties:  for  each individual estimated to be resident  in the city,  we build his
mobility network (Rinzivillo et al. 2014) and analyze its network features, such as number of nodes, etc.

 Road network and traffic concentration: the static structure of roads in the city is analysed, by computing
for instance their spatial concentration, and by joining them with real mobility data we measure how much
the traffic is concentrated in a few km of roads.

Examples of the above mentioned measures are shown in the following figure, plotting their spatial distribution
over the Tuscany region. It is clearly visible that most indicators have a rather high heterogeneity over the
territory, meaning that each city shows some difference from others, including close ones. At the same time,
each indicator is  significantly different  from the others,  thus bringing potentially useful  and non-redundant
information.

Fig. 2. Spatial distribution of sample city indicators over the Tuscany region: (a) Population entropy, (b) Modularity,
(c) Fit to gravitation model, (d) N. of nodes in IMNs, (e) Roads concentration, (f) Traffic concentration.

5.2. Individual Mobility Networks

Based on the paradigm introduced by Rinzivillo et al (2014), the mobility of an individual can be summarized by
a graph representing the locations visited by the user (inferred from the single start- and end-points of each trip
performed)  and the transitions between locations,  together  with spatio-temporal  distributions associated to each
location and transition. IMNs are a basic tool to analyze the population of an area through the characteristics of the
individual that live there. First explorations show that the differences across different areas are not easy to spot
through direct visual inspection, as shown in the following figure.

Fig. 3. Sample IMNs for 6 different cities in Tuscany. Apparently, no clear visual feature characterize cities.

Therefore, new ways of representing, aggregating and visualizing IMNs are under study, to enable a more effective
comparative analysis of different territories. 
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In addition to that, human mobility is a dynamic phenomenon that can change significantly in time, and therefore
IMNs  can  represent  the  gradual  evolution  of  users’  changing  mobility  needs.  The  following figure  shows  an
example  where  the  IMN of  a  user  has  been  computed  over  two months  (left)  and  then  recomputed  over  the
following two months (right).

Fig. 4. Temporal evolution of a IMN computed over 2–months periods. Changes in mobility are clearly visible.

In can be easily seen that while the core parts of the user’s mobility are preserved (North of the city), its spatial
range extended significantly over new areas. Also, the frequency of visits of the new areas (represented by the size
of  the  corresponding  nodes)  suggest  they  became part  of  the user’s  routines.  How to integrate  such  evolution
patterns in a comprehensive model of human mobility is a challenging question that is currently under study.

5.3. Geographical Transfer of Mobility Models

As previously discussed, the data availability in the mobility domain is often heterogeneous, allowing to build
strong models (for instance, predictive ones) on some geographical areas where rich data are accessible, but not on
other, less rich areas. It is well known that any (non-trivial) mobility model is tightly linked to the area it describes,
therefore we expect that a good model built on a (data-rich) area does not work equally well on different regions.

There are two main ways to tackle the problem. One consists in developing a strategy that takes a strong model
built on a specific area A and adapts it to work on a different area B by exploiting the (relatively little) information
available over the latter. The already cited approaches in Rinzivillo et al (2014) represent examples of such line of
work. Another, simpler way consists in recognizing which are the areas where the model developed on area A is
likely to perform well. This clearly requires to study the features of the areas that make them somehow compatible,
i.e. they apparently obey to the same kind of rules. In the following we briefly report some results obtained on this
second direction, where the city descriptors introduced in a previous section (Mobility-based Characterization of
Geographical Areas) have been deployed to group cities into clusters.

First, a simple prediction problem is defined: predicting the traffic of the next hour in key areas of a city. In
particular, each of the 270+ municipalities of Tuscany, Italy was divided in a regular grid and 10 representative cells
were selected, 5 among the top 10% traffic and 5 within the 80-90% percentile of traffic. For each city, then, a time
series representing the aggregate hourly traffic volume of such cells is obtained, and the prediction task is to predict
the next value based on previous ones. The prediction model adopted is a standard XGBoost regressor (Chen and
Guestrin 2016). The next figure shows four sample cities analyzed (a) and a sample hourly time series (b).
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Figure 5: sample cities analyzed (a), sample hourly time series and (c) normalized root mean square error (NRMSE)

The matrix in Figure (c) shows, for each pair (A,B) of cities, the normalized RMSE (root mean square error) of
predictions obtained on B by using the model learnt on city A. The cities have been clustered through a hierarchical
agglomerative method based on the city features already introduced in Section 5.1, which yielded 4 clusters. The
matrix described above has the rows and columns sorted according to the cluster each city belongs to, resulting in a
block matrix, blocks being delimited by red lines. What we can see, is that blocks on the diagonal, corresponding to
cities in the same cluster,  exhibit a brighter color than others,  which means that the NRMSE error tends to be
smaller. This provides a first evidence that the cities that look similar based on the features studied above are also
homogeneous in terms of rules that drive the evolution of traffic volumes, and therefore the prediction model is
more easily transferrable among them.

The results shown above are obviously just  a first step towards the overall  objective.  Indeed,  the prediction
problem and the model adopted were rather simple, whereas in real applications, including those considered in this
paper, both problem and model are expected to be much more complex and challenging. Moreover, the approach
followed here, i.e. recognizing pairs of model-compliant cities, is effective only if the data-rich cities available cover
most of the city types (the clusters in our experiment) we expect to meet, since in that case each city can be served
with a model built from a data-rich city of the same type. Data-poor cities of different types would be not associated
with any model. The more general solution consists in defining adaptation strategies (possibly based on the same
city features considered here) that allow to customize a model to the specific city we need to apply to.

5.4. Crash Prediction

Predicting the crash risk of a user is a difficult task, since it is in general affected not only by how the user drives,
but also by external  factors,  including other drivers. The existing literature addresses  the problem from various
perspectives. A large body of works focus on real-time prediction of individual crashes, i.e. try to identify the events
that lead to a crash in next few seconds, thus providing feedbacks to the user as she drives, e.g. Wang, Xu and Gong
(2010). Other approaches work on identifying areas that show characteristics usually associated with accidents, such
as  increased  traffic  density,  adverse  weather  conditions,  etc.,  e.g.  Lee,  Hellinga  and  Saccomanno  (2003)  and
Mannering and Bhat (2014). While extremely useful, such approaches result to be not applicable to fields like car
insurance,  where  we  are  interested  in  creating  a  general  risk profile  of  the  user,  thus  implicitly  involving the
prediction of her crash risk in the long run, such as few months in the future. Only few, early works are available on
this direction, e.g. Wang et al. (2017), limited to simplistic approaches.

In this preliminary exploration of the problem, we focused on such long-term prediction of crash risk, and we
measure what kind of performances we can expect to reach with simple users’ features. In particular, experiments
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consist in characterizing each user by his mobility data in a time window of three months, and try to predict the
presence of crashes in the next month.

The features adopted fall in the following three categories:
  Travel features: length and duration of trips, also split into periods of the day or of the week
  Events features: frequency and intensity of driving events, i.e. accelerations and decelerations, divided

by event type and temporal intervals
 Car brand and model

The prediction was performed with various methods, including Random Forests, Support Vector Machines and
Neural Networks. RFs yielded the best and more stable results, shown in the following figure. The table also divides
performances over different subsets of features (traj = travel only, evnt = events only, evnt = both, all = include also
brand and model). The results were computed over a sample of data, covering vehicles in Rome and London, and
the corresponding model parameters were selected by grid search optimization.

Fig. 6. Performances of Random Forest models on various sets of features

 We can see that using all feature types the overall performances (F1 score) is maximized, and therefore all
features appear to bring some improvement. We notice that the problem is imbalanced (around 1 crash every 5
users), therefore a significant recall is as valuable as a high accuracy.

6. Conclusions and future works  

This paper presented a set of applications in the car telematics domain, that correspond to a demonstrator of the
Track and Know EU project, focusing in particular on telematics car insurance and mobility services. The technical
challenges to transform the raw mobility data collected by the telematics  companies  into insights and valuable
services are numerous and require improvements of current research state-of-art. Preliminary results show promising
signals of meaningful solutions for the identified problems. 

The  ongoing  work  is  trying  to  purse  several  of  the  challenges  mentioned  in  the  paper:  developing  more
sophisticated  individual  mobility  models,  that  might  extend  existing Individual  Mobility  Networks;  developing
strategies to adapt one model built in a geographical  area to work well  on a different one;  developing a set of
sophisticated mobility descriptors to better identify crash risks in the long term, including relations with the geo-
spatial  context,  weather  conditions,  changes in  the driving habits (e.g.  through the analysis of  the user’s  IMN
changes), etc.; defining satisfactory indicators to measure the compatibility of users with shared mobility or electric
vehicles, as well as developing processes to accurately estimate them.
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