

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 780754.

Big Data for Mobility Tracking Knowledge Extraction in Urban
Areas

D2.3 Development of Toolboxes Integration
Connectors

Document Summary Information

Grant Agreement No 780754 Acronym TRACK & KNOW

Full Title Big Data for Mobility Tracking Knowledge Extraction in Urban Areas

Start Date 01/01/2018 Duration 36 months

Project URL https://trackandknow.eu

Deliverable D2.3 Development of Toolboxes Integration Connectors

Work Package WP2 Data Processing Architecture & Infrastructure (BDMI Toolbox)

Contractual due date 20/06/19 Actual submission date 20/06/19

Nature Other Dissemination Level PU

Lead Beneficiary 05 - INTRASOFT

Responsible Author Ioannis Daskalopoulos (INTRA), Marios Logothetis (INTRA)

Contributions from Toni Staykova (CEL), Leonardo Longhi (SIS), Fabio Manichetti (CNR), Mirco Nanni
(CNR), Gennady Andrienko (Fraunhofer), Ian Smith (PAP), Akrivi Vlachou (UPRC),
Christos Doulkeridis (UPRC), Yannis Theodoridis (UPRC), Athanasios Koumparos (VFI),
Anagnostis Delkos (VFI), Panos Livanos (VFI)

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 2

Revision history (including peer reviewing & quality control)

Version Issue
Date

%
Complete

Changes Contributor(s)

V0.1 15/04/19 5% Initial Deliverable Structure Ioannis Daskalopoulos
(INTRA)

V0.2 13/05/19 85% Initial Internal Review version Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

V0.3 17/05/19 95% Internal Review version Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

V0.4 05/06/19 99% Peer Review Contributions Ian Smith (PAP), Kieran Lee
(PAP), Nikos Katzouris
(NCSRD)

V0.5 10/06/19 100% QA process Marios Logothetis (INTRA)

V1.0 19/06/19 100% Final version Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

V1.1 27/08/19 100% Final version with Annex Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the TRACK&KNOW consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRACK&KNOW Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRACK&KNOW Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© TRACK&KNOW Consortium, 2018-2020. This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 3

Executive Summary

This document extensively addresses Track&Know Development of Toolboxes Integration Connectors based on
requirements, facilitating the seamless integration of internal and external data sources. The scope of this
document is to report on the final development of toolboxes integration connectors, as a result of the
experiences and software artefacts obtained in the second development iteration, towards producing a scalable,
fault-tolerant, communication-efficient framework for cross-streaming data management and integration.

A scalable, fault-tolerant platform for big data by collecting, integrating and processing streams of data, including
contextual data, is one key objective and main requirement for the Track&Know project. The platform should be
based on an open architecture system ensuring both scalability and interoperability as well as open software
standards, including a privacy by design approach to ensure that privacy and ethical issues are respected. The
platform should include ready-to-go integration connectors for the seamless homogenization of multiple,
voluminous and heterogeneous data-in-motion and data-at-rest sources. Moreover, the platform with the
efficient management of diverse data sources and the provision of the connectors (with a continuous system
availability of 24 hours a day, 7 days a week) will be able to support analytics and efficient spatiotemporal and
contextual query-answering, complex data operators and Visual mobility analytics.

The development of the High-level Architecture of the Track&Know platform by highlighting the Data Sources
and Data Store, the Connectors and Communication Platform, the underlying Infrastructure and Toolboxes is
presented in this document. The design and development of the Track&Know platform takes account of business
and interoperability requirements that have been collected and reported within the WP1 activities, by also
considering the data diversity, volume and availability, in terms of extremely large and complex collections, and
the detailed use-case scenarios described in WP6 and specifically in D6.1.

In order to provide a high-quality communication framework for Track&Know project, the connectors and the
platform have been developed and deployed in a distributed environment, to enable development that can take
advantage of the clustered deployment, demonstrate scalability, allow performance tests, provide metrics and
finally allow for the identification of issues and related corrective actions in a timely manner, well before the
Pilots utilise the platform.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 4

Table of Contents
Document Summary Information ... 1
Revision history (including peer reviewing & quality control)... 2
Disclaimer ... 2
Copyright message .. 2
Executive Summary ... 3
List of Figures... 5
List of Tables .. 8
Glossary of terms and abbreviations used .. 9
1 Introduction ... 12

1.1 Mapping TRACK&KNOW Outputs ... 12
1.2 Deliverable Overview and Report Structure .. 13

2 Track & Know Architecture... 14
2.1 Requirements for the architecture for the management of structured & unstructured data streams 14
2.2 High-level Architecture ... 16

2.2.1 Data Sources and Data Store ... 17
2.2.2 Connectors and the Communication Platform ... 18
2.2.3 Infrastructure, Toolboxes and Pilots .. 18

2.3 Platform Implementation Milestones ... 19
3 Technologies and useful concepts related to Track&Know Connectors implementation 20

3.1 Apache Kafka .. 20
3.2 Producers and Kafka Connect ... 22

4 Cluster Provisioning, Scalability and System Architecture ... 24
4.1 Cluster Administration and Monitoring ... 26

4.1.1 The Grafana Track&Know Cluster Overview .. 26
4.1.2 Kafka Manager .. 29
4.1.3 Kafka Connect UI .. 30

5 Track & Know Datasets and Connectors ... 32
5.1 VFI Data Connectors ... 33

5.1.1 Kafka Producer type Connector for the VFI historical data .. 33
5.1.2 Kafka Connect type Connector for the VFI live data ... 45

5.2 SIS Data Connectors ... 52
5.2.1 Kafka Connect type Connector for the SIS DATASET1 data .. 54
5.2.2 Kafka Connect type Connector for the SIS CRASH data .. 57
5.2.3 Kafka Connect type Connector for the SIS EVENTS data .. 61
5.2.4 Kafka Connect type Connector for the SIS POSITIONS data .. 64
5.2.5 Kafka Connect type Connector for the SIS VOUCHER data ... 67
5.2.6 Introducing SIS datasets to the Track&Know Platform... 70

5.3 PAP Data Connectors .. 73
5.3.1 Producer type Connector for the PAP reconstructed journey data .. 73
5.3.2 Kafka Connect type Connector for the VFI/PAP Smartphone app live data 81

5.4 Other available Connectors .. 86
5.4.1 Introducing data by using the Rest Proxy .. 86
5.4.2 Connectors available in the Confluent Hub ... 86

6 Conclusions .. 87
7 References ... 88
8 Annex .. 92

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 5

List of Figures
Figure 2.1 The Track&Know Real Time Processing Flow .. 15

Figure 2.2 The Track&Know components mapped to the BDVA reference model (source: www.bdva.eu) 16

Figure 2.3 Track&Know High level architecture .. 17

Figure 2.4 Track & Know Platform Implementation Milestones .. 19

Figure 3.1 Apache Kafka Cluster Diagram taken from [7] .. 20

Figure 3.2 Sample 3-Broker Apache Kafka Cluster .. 21

Figure 3.3 The Kafka Connect API, taken from [10] ... 23

Figure 4.1 Track&Know Platform Cloud Computing Nodes ... 24

Figure 4.2 The noVNC remote desktop ... 26

Figure 4.3 The Track&Know Cluster Overview Dashboard .. 28

Figure 4.4 Kafka Manager displaying Brokers ... 29

Figure 4.5 Kafka Manager displaying Topic details.. 30

Figure 4.6 Kafka Connect UI displaying Connect Cluster ... 31

Figure 4.7 Kafka Connect UI displaying Connectors .. 31

Figure 5.1 The Track&Know repository .. 33

Figure 5.2 VFI customer data folders .. 33

Figure 5.3 VFI data in CSV files ... 34

Figure 5.4 VFI file contents ... 34

Figure 5.5 Parallelisation of the VFI data loading .. 35

Figure 5.6 Building and assembling the VFI batch producer .. 36

Figure 5.7 Producer jar and properties file ... 36

Figure 5.8 Topic creation for VFI batch data ... 38

Figure 5.9 Topic for VFI in Kafka Manager .. 39

Figure 5.10 VFI batch connector startup command .. 39

Figure 5.11 VFI batch connector startup output ... 40

Figure 5.12 Incoming message rates for VFI batch data .. 41

Figure 5.13 Multiple producers startup .. 42

Figure 5.14 Incoming message rates with multiple producers .. 43

Figure 5.15 Multiple producers (experiment finished) .. 44

Figure 5.16 Reading VFI batch data from topic ... 45

Figure 5.17 Sample of VFI batch data message ... 45

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 6

Figure 5.18 Building the VFI live data connector ... 46

Figure 5.19 Kafka Connect jars directory .. 46

Figure 5.20 Kafka Connect UI for starting connectors ... 47

Figure 5.21 Selecting a new Connector .. 47

Figure 5.22 Configuring a Kafka Connect Connector ... 48

Figure 5.23 VFI live data connectors running .. 49

Figure 5.24 Reading VFI live data messages .. 50

Figure 5.25 Sample of VFI live JSON data .. 50

Figure 5.26 Reading VFI live data messages (AVRO) ... 51

Figure 5.27 Sample of VFI live AVRO data ... 51

Figure 5.28 Schema Registry entry for VFI live data .. 52

Figure 5.29 Building SIS connectors .. 53

Figure 5.30 Kafka Connect jars directory with SIS connectors ... 54

Figure 5.31 SIS DATASET1 collection .. 54

Figure 5.32 Kafka Connect UI and running connectors ... 55

Figure 5.33 Selecting the DATASET1 connector .. 55

Figure 5.34 Configuring the DATASET1 connector .. 56

Figure 5.35 SIS CRASH collection .. 58

Figure 5.36 Selecting the CRASH connector .. 59

Figure 5.37 Configuring the CRASH connector .. 59

Figure 5.38 SIS EVENTS collection .. 61

Figure 5.39 Selecting the EVENTS connector .. 62

Figure 5.40 Configuring the EVENTS connector .. 62

Figure 5.41 SIS POSITIONS collection .. 64

Figure 5.42 Selecting the POSITIONS connector ... 65

Figure 5.43 Configuring the POSITIONS connector ... 65

Figure 5.44 SIS VOUCHER collection ... 67

Figure 5.45 Selecting the VOUCHER connector ... 68

Figure 5.46 Configuring the VOUCHER connector ... 68

Figure 5.47 Creating the SIS topics ... 70

Figure 5.48 SIS topics seen in the Kafka Manager ... 71

Figure 5.49 SIS Connectors running .. 71

Figure 5.50 SIS Connectors at work .. 71

Figure 5.51 SIS topic data sample ... 73

Figure 5.52 PAP journey data in JSON files ... 74

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 7

Figure 5.53 PAP journey data JSON sample .. 75

Figure 5.54 Building and assembling the PAP journey batch producer .. 76

Figure 5.55 Producer jar and properties file ... 76

Figure 5.56 Topic creation for VFI/PAP journey data .. 78

Figure 5.57 Topic for VFI/PAP data in Kafka Manager ... 79

Figure 5.58 PAP/VFI batch connector startup command .. 79

Figure 5.59 VFI/PAP journey connector startup output .. 80

Figure 5.60 Incoming messages and rates for PAP journeys ... 81

Figure 5.61 Building the pap-vfi-live connector .. 82

Figure 5.62 The pap-vfi connector dir. .. 82

Figure 5.63 Selecting the PAP/VFI connector .. 83

Figure 5.64 Configuring the PAP/VFI connector .. 84

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 8

List of Tables
Table 1 Adherence to TRACK&KNOW’s GA Deliverable & Tasks Descriptions ... 12

Table 2 System Specification per Node .. 25

Table 3 Properties and sample values for the VFI batch producer .. 37

Table 4 VFI batch data loading runs ... 44

Table 5 Configuration options for the VFI live data connector .. 48

Table 6 SIS DATASET1 connector configuration options ... 56

Table 7 SIS CRASH connector configuration options ... 60

Table 8 SIS EVENTS connector configuration options.. 63

Table 9 SIS POSITIONS connector configuration options ... 66

Table 10 SIS VOUCHER connector configuration options .. 69

Table 11 Properties and sample values for the VFI batch producer .. 77

Table 12 Configuration options for the PAP/VFI live data connector .. 84

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 9

Glossary of terms and abbreviations used

Abbreviation / Term Description

API Application Programmable Interface

AMQP Advanced Message Queueing Protocol

BD Big Data

BDA Big Data Analytics

BDP Big Data Processing

BMDI Big Mobility Data Integrator

BMI Body Mass Index

CCG Clinical Commissioning Groups

CER Complex Event Recognition

CLI Command Line Interface

CPAP Continuous Positive Airway Pressure

CPU Central Processing Unit

CSV Comma Separated Values

DoA Description of Action

DB Database

DNA Did Not Attend

DST Day-light Saving Time

DVLA Driver and Vehicle Licensing Authority

ESS Epworth Sleepiness Scale

EtC Ethics Committee

ETL Extract Transform Load

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical User Interface

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 10

HBASE Hadoop Database

HDFS Hadoop Distributed File System

HGV Heavy Goods Vehicle

HTTPS Hypertext Transfer Protocol Secure

IO Input/output

IT Information Technology

JDBC Java Database Connectivity

JMS Java Message Service

JMX Java Management Extensions

JVM Java Virtual Machine

KPI Key Performance Indicators

MQTT Message Queue Telemetry Transport

NFS Network File System

NIST National Institute of Standards and Technologies

ODI Oxygen Desaturation Index

OSA Obstructive Sleep Apnoea

PMB Project Management Board

PR Pulse Rate

RPM Rotations Per Minute

SASL Simple Authentication and Security Layer

SFTP SSH File Transfer Protocol

SLA Service Level Agreement

SQL Structured Query Language

SSH Secure Shell

SSHFS SSH Filesystem

SSL Secure Sockets Layer

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 11

STOMP Simple (or Streaming) Text Orientated Messaging Protocol

TLS Transport Layer Security

URL Universal Resource Locator

UTC Coordinated Universal Time

UV Ultraviolet

VA Visual Analytics

VM Virtual Machine

WP Work Package

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 12

1 Introduction
This deliverable is under “Development of Toolboxes Integration Connectors” which represents Task 2.3 of the
Project. The scope of this document is to provide a detailed description of the software components developed
in order to facilitate the seamless integration of data sources to the Track&Know Platform. This deliverable is
provided as a complementary source of information, which highlights and documents various aspects of the
implemented software, its usage and its configuration.

Moreover, in this document the architecture, system design, deployment specifics, technologies and useful
concepts related to the Track&Know Platform and the connectors’ implementation are also presented to assist
in the overall description of the produced software artefacts.

1.1 Mapping TRACK&KNOW Outputs
The purpose of this section is to map TRACK&KNOW’s Grant Agreement commitments, both within the formal
Deliverable and Task description, against the project’s respective outputs and work performed.

Table 1 Adherence to TRACK&KNOW’s GA Deliverable & Tasks Descriptions

TRACK&KNOW
GA

Component
Title

TRACK&KNOW GA Component Outline
Respective
Document
Chapter(s)

Justification

DELIVERABLE

D2.3
Development
of

Toolboxes
Integration

Connectors

Prototypes of the first version of the
Track&Know integration connectors
(Toolboxes), based on requirements
defined

in WP1. The connectors will facilitate
the seamless integration of internal and
external data sources.

Chapter 3,
Chapter 5
(Sections
5.1, 5.2,
5.3, 5.4)

Presentation of the developed
connectors which facilitate the
integration of internal and
external data sources, their
design, setup, operation and
informative screenshots of their
operation.

TASKS

Task 2.3
Development
of Toolboxes
Integration
Connectors
(INTRASOFT,
CEL, CNR,
FRHF, VFI)

This task is responsible for the
development of the Track&Know
integration connectors, based on
requirements defined

in WP1. During this task, we will pay
particular attention to the technical
integration of results produced by WP3-
WP5, as well as the interaction with
WP6 to ensure the successful
deployment of the system to use-case
and stakeholders’ sites. The task has
two iterations. The first iteration is
between M01 and M12. It will
contribute to the overall Track&Know

Chapter 2,
Chapter 3,
Chapter 5
(Sections
5.1, 5.2,
5.3, 5.4)

The respective document
sections present in detail the
software components designed
and developed which provide the
functionality described in the
task, taking in account during the
process requirements and input
from interactions with other
WPs.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 13

architecture through early development
of integration connectors. The
experiences and software artefacts
obtained in this process will become
valuable input for the second
development iteration. The result of the
first iteration will be delivered as interim
development of Toolboxes integration
connectors. The second design and
development iteration is between M12
and M18. It aims at integrating research
results and improving the maturity of
the integral Track&Know architecture.
Thus, in the second iteration we will
focus on the integration and testing
with WP3-WP6. The result of the second
iteration will be delivered as the final
development of toolboxes integration
connectors. The result of the task will be
documented in deliverable D2.3.

1.2 Deliverable Overview and Report Structure
This deliverable presents an insight to the Track&Know custom Integration Connectors which have been
implemented according to requirements, discussions in face to face ad hoc and plenary meetings and numerous
conference calls organised with involved partners. While this deliverable resides as part of WP2, WP1
Requirements Analysis findings (within Task 1.2 and Task 1.3) and WP6, Experiments Planning and Setup [1],
have been extensively taken into account.

This report is structured in the following way:

 Chapter 1: Introduction (this section), outlining the report and how it relates to the project as a whole.
 Chapter 2: Track&Know Architecture, presenting the High-level Architecture of the Track&Know platform,

implementation milestones and the approach in general.
 Chapter 3: Technologies and useful concepts related to the Track&Know connectors implementation,

providing a description of the tools and technologies that the Track&Know Big Data Platform is onboarding
and offering to the Project, towards a fault-tolerant communication-efficient big data processing framework.

 Chapter 4: System architecture of scalable, fault-tolerant communication-efficient framework, describing
the deployment of the platform presented in a realistic, industry resembling setup.

 Chapter 5: Track&Know datasets and connectors, providing an overview of the data made available by
partners together with detailed information about the VFI, SIS and PAP data connectors complemented by
informative figures related to their usage, configuration and performance.

 Chapter 6: Conclusions

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 14

2 Track & Know Architecture
The following section aims to present the high-level architecture of the Track&Know platform by highlighting the
Data Sources and Data Store, the Connectors and Communication Platform, the underlying Infrastructure,
Toolboxes and Pilots. Information provided within this section will serve as a quick overview to the reader,
highlighting some aspects of the platform and allowing better understanding of the Connectors functionality
within the platform. Extensive information regarding the Track & Know platform can be found in the deliverable
D2.1 [2]. The design of the Track&Know architecture takes in account business and interoperability requirements
that have been collected and reported within WP1 activities. Important platform implementation milestones are
also presented.

2.1 Requirements for the architecture for the management of structured &
unstructured data streams

The tools and technologies employed in the Track&Know Platform are carefully selected with high performance
and high availability in mind, in order to meet the requirements extracted from the DoW, D1.2 (Corporate Big
data requirements), D1.3 (Interoperability requirements) and pilot use cases.

It should be noted that the technologies selected allow clustered, highly available deployments that in addition
to that can scale horizontally to accommodate increased workloads. As far as the advancements in
interoperability are concerned, the aim is to achieve as many data flows as possible via Topics in a
Publish/Subscribe fashion, which ensures that any data producer or consumer can provide or use data of the
platform by simply abiding to the clearly documented approaches for reading from and writing to Kafka Topics.

It was necessary to adopt a scalable, fault-tolerant platform for big data to enable collection, integration and
processing of streams and contextual data. This represented a key objective and main requirement for the Track-
&Know project. The platform had to be based on an open architecture system which would ensure both
scalability and interoperability as well as open software standards and include a privacy by design approach to
ensure that privacy and ethical issues are respected. The platform also had to include ready-to-go integration
connectors and allow the development of custom ones, for the seamless homogenization of multiple,
voluminous and heterogeneous data-in-motion and data-at-rest sources.

It was also highlighted that the platform, with an efficient management of diverse data sources and the provision
of the connectors (with a continuous system availability of 24 hours a day, 7 days a week) had to be able to
support analytics and efficient spatiotemporal and contextual query-answering, complex data operators and
Visual mobile analytics. Finally, the platform had to support the calculation, examination and reasoning upon
relative performance indicators by obtaining measurements with respect to data consumption, rates,
throughput, message count, derived data production etc. More detailed information on how the Track & Know
platform fulfils the above and more requirements can be found in the deliverable D2.1 [2].

The needs and requirements originating from the above clearly necessitate a thorough approach that follows
industry practices and can sufficiently provide adequate solutions for a high load of information exchange
between interconnected systems and components, further allowing specific tuning depending on the (real-time,
batch) processing needs emerging from the diverse project use-cases.

Moreover, accessing the available data sources should be straightforward enough to shift the focus of the
researchers to the actual research pursuits of the project and not into how to connect to available data. The
Platform should ideally allow the use of data sources by extending existing APIs and in a publish/subscribe
fashion, while following at the same time approaches that are adopted in industry. This also helps towards a
more extensive use of the produced tools by other domains.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 15

Figure 2.1 The Track&Know Real Time Processing Flow

Apache Kafka is characterized as a distributed streaming platform with, among other advantages and features,
built-in capabilities for straightforward horizontal scalability. Kafka organizes data in partitioned topics and
makes possible the

i) Simultaneous processing of data that are entering the system from multiple clients with
ii) Clients being able to read the incoming information at different offsets per client and with
iii) The ability for clients to repeatedly process (replay) the streamed data.

Kafka can be configured for high throughput or tuned for low latency, depending on the case and is used
successfully for real-time data streaming in the Industry [3].

When employing the described technologies, the business logic and solutions are implemented by incorporating
distinct, loosely coupled components, which communicate via Apache Kafka. This enables potential simultaneous
access to all the data available to the system, in order to produce results, either in batch or real-time scenarios.
The approach of formulating solutions around Apache Kafka mainly incorporates the setup of Big Data processing
pipelines.

It should be noted that Kafka can also cope very well with small message sizes (10-1024 bytes) when compared
to other brokers, and this is very important to the use-cases of Track&Know, which feature big numbers of small
mobility data messages. Apart from the increased performance in message rates, there is also evidence that
Apache Kafka scales better when compared to other approaches [4]. It is worth mentioning that while other
approaches can guarantee the delivery of messages up to “at least once”, Kafka supports “exactly once” delivery
semantics between producers and consumers of messages simply by enabling specific idempotence
configurations [5]. This is a very important feature, as exactly once delivery is a very complex problem in
distributed systems and having this addressed out-of-the-box would be enough for many users to justify the
selection of Kafka, especially if someone considers the increased performance and scalability characteristics.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 16

Figure 2.2 The Track&Know components mapped to the BDVA reference model (source: www.bdva.eu)

While Apache Kafka and specific tools that complete the platform are described further in the related deliverable
D2.1 [2], it should be evident that the Track&Know Platform by utilizing the latter, is offering a more thorough
approach, also promising to be adopted in other domains and industries. The Platform not only successfully fulfils
the Data Management layer of BDVA shown in Figure 2.2 above, meeting Track & Know Objective 1, but also
with the tools that the platform enables and onboards, a solid groundwork and even out of the box solutions are
provided for developing Data Processing Architectures and facilitating the upward layers of the BDVA Model,
providing thus an increased value of the Track & Know Platform not only for the specific project but for the
community, other projects and other domains in general.

2.2 High-level Architecture
In this section the Track&Know High level architecture is presented, together with a description of the individual
functional components, their interactions and the related workplan’s Tasks. This architecture fulfils Big data
requirements, described in D1.2, by also considering the data diversity, volume and availability in terms of
extremely large and complex collections, and the detailed use-case scenarios described in WP6 and specifically
in D6.1.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 17

The architecture consists of:

● Data sources which represent the structured and unstructured data streams to be made available and
be connected to the platform.

● Data store which represent the batch and interactive data sources that will be made available and will
be connected to the platform.

● Connectors together with the Communication platform, that connect external Data sources and the Data
store and make them available to the platform, Toolboxes and Pilots.

● Underlying Infrastructure providing all the necessary Big data tools.

Figure 2.3 Track&Know High level architecture

2.2.1 Data Sources and Data Store

The external to the platform input data sources (Data Sources) represent the structured and unstructured data
streams and the batch and interactive data sources that will be made available and will be connected to the
platform. Similarly, and according to the requirements, appropriate persistent storage will be used, that can be
seen in the input/output data components (Data Store). The Big data platform can efficiently interoperate with
all the modern data storage technologies of a Big data ecosystem such as RDBMS, NoSQL, HDFS Hadoop, Apache
HBASE, etc. as well as other persistence approaches such as Mongo, MySQL, JDBC, etc. The data sources are
integrated and introduced to the platform by the means of integration connectors (Connectors) which will be
described in this document.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 18

2.2.2 Connectors and the Communication Platform

External data sources are connected and made available by employing the “Stream Connectors” and “Data
Source Connectors”. These connectors are applicable to both historical and live data sources while operating in
batch or real-time modes effectively introducing all the data available in Track&Know to the Platform for further
processing and usage. The underlying technologies and capabilities of the Streaming Component and the
multiple workers of the Connect Component enables the realisation of scalable and secure streaming data
pipelines. The Communication Platform represents a distributed streaming platform, which is an Apache Kafka
cluster. Apache Kafka allows publishing and subscribing to streams of records (Topics) similar to the functionality
provided by a message queue, fully decoupling the components involved.

The streams of records are stored in a fault-tolerant durable way and consumers can process them as they occur,
while multiple readers are allowed to read data in a topic at different offsets, replay the data, start from a specific
offset, the beginning etc. In general, Kafka is suitable for building real-time streaming data pipelines to reliably
exchange data between systems or applications and for building real-time streaming applications that transform
or react to streams of data. The following Kafka APIs are available so that both Toolboxes and Pilots, shown in
Figure 2.3 can interact with the Communication Platform according to needs. In general, an application would
connect to a Broker to consume from, or produce to, one or more Topics (indicated above as R/W Read/Write
to Topics):

1. “The Producer API allows an application to publish a stream of records to one or more Kafka topics”. [6]

2. “The Consumer API allows an application to subscribe to one or more topics and process the stream of
records produced to them”. [6]

3. “The Streams API allows an application to act as a stream processor, consuming an input stream from
one or more topics and producing an output stream to one or more output topics, effectively
transforming the input streams to output streams”. [6]

4. “The Connector API allows building and running reusable producers or consumers that connect Kafka
topics to existing applications or data systems. For example, a connector to a relational database might
capture every change to a table”. [6]

For the development of the Integration Connectors, the Producer and Connector APIs have been extensively
used during their implementation. In order to accommodate specific data needs of individual Toolboxes and Pilot
use cases, the Connectors component includes purpose-built integration connectors that allow a Toolbox or Pilot
module to access data by utilising the Kafka cluster. To avoid restrictions, it is always allowed to bypass the Kafka
cluster and interact with the Data Store component of choice directly, by using Toolbox/Pilot Connectors. It
should be noted that in this document the focus is on the Connectors that introduce data to the Apache Kafka
Topics for further use within the processing pipelines.

2.2.3 Infrastructure, Toolboxes and Pilots

The underlying infrastructure consists of multiple Cloud VMs provided for each WP according to specific needs
and hosts the necessary technologies required by the Toolboxes It allows toolbox-specific storage and analysis
of the data involved and the usage and execution of Toolboxes. It facilitates the execution of Pilots, by providing
a distributed computing environment that supports the above, according to the technologies of choice for their
realisation. As already described, the developed toolboxes (designed and developed within WP3, WP4 and WP5)
are able to consume incoming data via the Communication Platform. The Toolbox code can connect to a
Streaming Component Broker and consume data from a Topic. Similarly, the Toolbox code can write, persist and
publish data to a Topic (that can be further used by e.g. another job, Toolbox or a Pilot). It is worth mentioning
that the Communication Platform effectively provides access to all available Track&Know specific external data,
introduced to it by the Connectors, via the Streaming Component and by using Topics. This approach allows the
setup of batch and real-time stream processing applications also referred to as data processing pipelines.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 19

Depending on the pilot use case, an individual Pilot interacts with and uses one or more Toolboxes in order to
demonstrate a specific usage scenario. Therefore, a Pilot implementation indirectly accesses and processes
incoming and existing data by using the Toolboxes. Furthermore, a Pilot implementation can consume derived
data that the Toolboxes’ processing produces. In the above architecture this is achieved as follows:

1. By writing derived data from a Toolbox to a Kafka Topic for the Pilot to consume. This utilises the
Communication Platform and can allow a Pilot to consume derived data in real time.

2. By writing derived data from a Toolbox to the Data Store. The Pilot may or may not use the
Communication Platform to access the derived data.

To satisfy Pilot data and processing requirements, the Toolbox/Pilot Connectors and the Communication
Platform allows access to all data available in the system. The underlying infrastructure will enable execution of
Pilot code and submitted jobs according to the requested technologies.

2.3 Platform Implementation Milestones
The implementation and deployment of the Track&Know Platform described in the previous sub-section included
the development of the Track&Know integration connectors, according to requirements defined in WP1. The
effort for the Track & Know platform realisation was assigned to WP2 of the Project. Throughout the process,
technical integration of results produced by WP3-WP5, as well as the interaction with WP6 assisted the above
tasks. The connector implementation task was split in two iterations, the first of which took place between M01
and M12, featuring an early development of integration connectors. At the time of writing, the initial
development of connectors has been completed and the second iteration followed until M18 of the project. The
Track&Know platform is successfully deployed and is fully operational in a cluster spanning multiple Cloud VMs.
In addition to the above, the Consortium had the chance to attend a workshop specifically for accessing and
using the Platform. Furthermore, a development, single-host stack of Apache Kafka and other tools, for
experimentation and/or development tasks was provided, accompanied with instructions and guidelines. The
initial experiences and software artefacts obtained in the first iteration served as input to the second iteration,
which has fine-tuned the implementation of connectors in close collaboration with Toolboxes and Pilots.
Integration and testing with WP3-WP6 resulted in a finalised version of the integration connectors.

In the timeline shown below, the two iterations mentioned together with important milestones are depicted:

Figure 2.4 Track & Know Platform Implementation Milestones

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 20

3 Technologies and useful concepts related to Track&Know Connectors
implementation

This section aims to provide a short description of the technologies and concepts that the Track&Know custom
Connectors utilise, extend and are based upon. Apache Kafka, Kafka Topics, Kafka Producers and Consumers, as
well as Kafka Connect are briefly presented to assist the reader in better understanding the produced
Connectors. For a more detailed description regarding the Track&Know platform please consult deliverable D2.1
[2].

3.1 Apache Kafka
Apache Kafka is as an open-source, highly scalable, stream-processing platform maintained by the Apache
Software Foundation. The software platform is designed to provide a high-throughput and low-latency ingestion,
processing and consumption environment for real-time data feeds, that is usually run as a cluster on multiple
hosts. Kafka offers four core APIs: Producer, Consumer, Streams and Connector, which are depicted in Error!
Reference source not found..

Figure 3.1 Apache Kafka Cluster Diagram taken from [7]

In an Apache Kafka Cluster it is usual to see three or more Kafka Brokers which provide a setup of adequate
availability and replication for many scenarios. The Brokers themselves deal with the actual storage of the
incoming data and provide the necessary functionality for producers and consumers to perform their work.
Information in Kafka is stored in streams of messages or records that belong to a particular category called a
“Topic”. A Kafka record consists of a key, the actual value and a timestamp. While the actual value is provided
by the data producer, the key may or may not be provided and the timestamp is added by Kafka.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 21

Figure 3.2 Sample 3-Broker Apache Kafka Cluster

Apache Kafka can achieve secure, encrypted communications between Brokers and Clients by utilising SSL (TLS).
As far as compression of the exchanged information is concerned, Kafka offers end-to-end block compression.
Data is compressed by the producer to be subsequently written as is (in the compressed format) on the Broker.
When the data is to be consumed, the decompression occurs at the consumer end. Although Kafka can function
as a message queue, it can offer a lot more functionality, such as allowing the persistence of a message after it
has been read for further usage, operate even in cases where the data accumulated do not fit in the available
memory and offer replication features not available in message queues. Kafka aims by design at persisting Big
Data and increasing amounts of accumulated information without an impact to its performance. There are
examples of Kafka clusters running in production with over a petabyte of stored data [8]. The duration for which
data entering the cluster will be maintained and be available for further usage is configured on a per Topic basis
and can last from hours to indefinitely. Kafka will automatically delete “expired” data to free up space in the
cluster. An alternative approach allows the setting of a maximum amount of disk space that Kafka can take up
and, in this setup, older data will be removed to accommodate new messages.

As Kafka stores information in a continuous log, it manages to maintain both information that has occurred while
at the same time receiving information that is occurring, given that addition of new data to a Topic can go on
indefinitely. If we consider a Kafka client that consumes information from a topic we can highlight that the same
client that begins to read messages generated, for example, a year ago will continue to process the information
until it reaches the current date and seamlessly proceed to process the data that are entering the system in real
time as all the information is regarded as a continuous stream of data.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 22

3.2 Producers and Kafka Connect
During the development of the Connectors the APIs provided which allow the efficient ingestion of data from
various sources into the Track&Know Platform were extensively used. The Producer API and the Kafka Connect
API are the ones that the Connectors extend and were built upon.

By extending the Producer API an application can publish a stream of records to one or more Kafka topics of
interest. In general, a Producer sends messages to a Kafka Topic in key-value pairs. The key is used by the
partitioner, which determines in which partition each record should be maintained. While there is an option to
introduce a custom partitioner to control the way that the messages are spread among partitions based on some
semantic partition function, Kafka provides the Default Partitioner, which is adequate in most cases. A typical
producer would prepare the data and flush them to the Topic. Sending data is asynchronous and if required, the
producer can receive a callback. The Producer API is well suited in cases where streams of data are to be
transmitted, such as for example in IoT deployments, gathering of logs, loading batch data etc. When
implementing a solution that extends the Producer API there is no limitation to the custom functionality that can
be introduced in the Producer code which in turn enables elaborate ETL procedures to be implemented.

In a similar fashion, by extending the Consumer API an application can subscribe to one or more topics and
process a stream of records that these topics contain and/or receive. The consumer can choose to read from the
time of connection onwards or, if chosen, from the beginning of the Topic, receiving data that were produced to
that topic prior to its connection. Although the Consumer API has been used extensively during the development
of connectors to consume produced messages and test the incoming data, the main focus remains on the
Producer and Connect APIs.

Kafka Connect is an open source framework which ships with Apache Kafka and is built on top of the Producer
and Consumer APIs. Its purpose is to facilitate the high-performance streaming of data between Apache Kafka
and other data systems in a scalable, reusable and reliable fashion. The simplifications and abstractions offered
by the framework allow developers to quickly define and implement connectors that can move “large data sets
into and out of Kafka” [9]. Uses of Kafka Connect among others include the ingestion of databases or the
automatic capturing of updates in tables, the reading of files from several locations etc. into Kafka topics for
further stream processing. Developers adhering to the Connect API are provided with all the necessary tools and
groundwork that enables them to produce reusable, purpose-built connector plugins, which can be subsequently
run in a Kafka Connect Cluster. The Connect Cluster which runs alongside the Kafka Brokers can be configured to
distribute the tasks of a connector among the available workers of the Cluster for parallel processing, while at
the same time providing a means of tracking the work performed and resuming the connectors in the case of
failures with automatic offset management.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 23

Figure 3.3 The Kafka Connect API, taken from [10]

Having Kafka Connect available in the Track&Know Platform also allows the adoption of readily available
connectors which are in many cases certified and can significantly speed up the implementation of a solution by
allowing the quick setup of data processing pipelines and high-performance data interconnections among the
components of a system. In Track&Know this is not only a necessity for increased performance and incorporation
of sound design approaches that will demonstrate the adoption of modern techniques in developing solutions,
but also a relative KPI that aims to indicate a reduced time to realization for solutions. Furthermore, it is expected
to assist the adoption of the Track&Know platform and tools to other domains as it will enable the introduction
of other domain specific datasets with relative ease and assist in the interconnection of other system
components, facilitating thus experimentation with other data sources.

All the custom connectors produced for Track & Know can be fine-tuned to achieve the desired performance
characteristics, such as low latency or high throughput, or even trade off delivery and replication guarantees to
achieve specific performance requirements.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 24

4 Cluster Provisioning, Scalability and System Architecture
The Track&Know Platform is deployed in Hetzner Cloud [11] which provides the necessary flexibility of
commissioning and decommissioning virtual machines according to current and future needs in the project. At
the time of writing a total of 16 cloud computing instances of varying characteristics are operational, running
Centos 7 Linux minimal installations with encrypted disk drives to ensure data encryption at rest. The login
configurations for these machines do not permit root login and password authentication, allowing only key-
based authentication via SSH.

Specific firewall rules fully restrict SSH traffic to selected IP addresses. Other traffic is in general only allowed
between the cluster members, with the remaining IP addresses blocked by default, isolating the Platform from
the outer world. Although the traffic between these hosts is routed internally by Hetzner, which allows for better
network performance, the traffic still remains visible to a skilled attacker and therefore should be encrypted. At
the time of writing, Hetzner Cloud is not offering a private subnet where the machines can be isolated from the
rest of the Internet. In general, all data communications within the cluster are encrypted using SSL (TLS) by
employing the encryption mechanisms offered by Apache Kafka. Furthermore, in cases where the data are served
to other cluster nodes by an NFS server, then the alternative secure SSHFS is used. Finally, it should be mentioned
that any remote desktop connections are performed via HTTPS and file uploads are using SFTP. The diagram
below (Figure 4.1) provides an insight to the purpose of each node in the Track&Know Cluster.

Figure 4.1 Track&Know Platform Cloud Computing Nodes

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 25

The Cloud computing provider hosts the configuration shown above that is adequate for the current needs of
the Project and can be extended to accommodate future needs. Options include the introduction of new volumes
to increase storage capabilities of nodes, the allocation of more vCPUs in cases that a node has increased
computation needs and the increase of RAM for tasks that are memory intensive. While the configuration
changes mentioned above are mainly related to Vertical Scalability, it should be made clear that they do not
represent the main scalability approach for the Track&Know Communication Platform. The infinite, in principle,
capacity of the Platform originates from the Horizontal Scalability characteristics, pertaining to the technologies
selected and governs both their design and the design of solutions developed around them. To further highlight
the characteristics of each of the cloud instances presented above, the following table is provided which
describes the system specifications per node type.

Table 2 System Specification per Node

Node Type
CPU RAM SSD

Zookeeper Node 2 vCPU 4 GB 40 GB

Kafka Broker Node 8 vCPU 32 GB 240 GB

Kafka Connect Node 4 vCPU 16 GB 160 GB

NFS Node 4 vCPU 16 GB 160 GB

Rest Proxy Node 2 vCPU 8 GB 80 GB

Schema Registry Node 2 vCPU 8 GB 80 GB

UI & Monitoring Node 4 vCPU 16 GB 160 GB

General Node (WP3) 4 vCPU 16 GB 160 GB

General Node (WP4) 4 vCPU 16 GB 160 GB

General Node (WP5) 4 vCPU 16 GB 160 GB

Introducing more computing nodes is always possible by the Cloud computing provider, which can assume the
roles that need to be supported in each case, also increasing fault tolerance. For instance, in Figure 4.1 it can be
seen that the General Nodes, which are dedicated to specific WPs of the project can be increased depending on
the requirements and needs of the toolboxes deployed. Similarly, in a case that the monitoring of Kafka Brokers
indicates that the topics handled are loading the system, the Apache Kafka Cluster can be further extended by
adding extra Brokers which will automatically spread the load among them allowing the increasing client needs
to be handled. In general, the same approach holds for all the components shown in Figure 4.1 as the Kafka
Connect nodes of the Connect Cluster, which are effectively workers executing the Connectors’ tasks described
in previous chapters, can be set up and added at will, with the same thing holding for the NFS nodes (more can
be added), Rest Proxy and Schema Registry nodes (can even be run in a clustered manner).

The General Nodes appearing in Figure 4.1 represent computing nodes that are hosting a range of components
of the Track&Know Project from simple Kafka Producers and Consumers, to Kafka Streams applications, Kafka
KSQL Server(s), Toolboxes code and necessary technologies to support it etc. These nodes are provided so that

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 26

the solutions developed by other Toolbox WPs can be accommodated. It should be noted that these nodes are
commissioned when a specific need arises, in order for Toolbox and supporting libraries to be configured. This
also highlights the fact that the Cloud deployment of the platform is an active testbed for the Toolboxes early in
the process, which provides feedback on how the solutions integrate and allows sufficient room for fine tuning.
Taking in account the presented details, it becomes apparent that the Big Data solutions that the Track&Know
Platform enables represent highly elastic, initially low-scale, entry-level approaches that can expand and contract
according to the processing needs and the task in question. This translates to solutions that can be applied across
many domains in ways that can be cost effective during periods of initial or low business, while remaining capable
of growing for example when extra load is anticipated for a specific period, faster results should be obtained or
simply in cases that processing needs are increasing.

4.1 Cluster Administration and Monitoring
For enabling good overview and easy access to the functionality offered by the several components of the
Track&Know Platform, an extensive set of GUI components has been configured and are available for monitoring,
administration and configuration usage. These are mainly open source components individually available in the
community which have been selected and can be accessed when a user connects to a dedicated node which has
UI capabilities (Figure 4.1 - UI & Monitoring Node, General WP Nodes). The connection to the remote desktop of
that node is restricted to a specific list of allowed IP addresses, occurs strictly via HTTPS and is password
protected. The user that wishes to access the remote desktop does not need to install any particular client due
to the fact that noVNC [12] is used. Therefore, connecting to the remote desktop is as simple as opening an
ordinary web page and does not require the user to open other ports locally or remotely as all traffic is routed
via port 443 for HTTPS. When the browser window is maximised, the experience is very similar to working on the
actual machine and has proven to work very well.

Figure 4.2 The noVNC remote desktop

4.1.1 The Grafana Track&Know Cluster Overview

The central monitoring approach adopted for the Track&Know platform utilises JMX exporters which are running
on individual cluster nodes and expose a wide range of metrics depending on the node type. All these metrics
are gathered at the UI & Monitoring Node where the Prometheus time series collection and processing server
resides. All gathered data are available to compose informative dashboards which provide metrics, graphs and
panels about the overall Platform status, performance and health.

The visualisation of the gathered metrics is achieved by a custom Track&Know Cluster Overview Dashboard seen
in Figure 4.3. The current configuration allows the user to get a thorough overview of the Platform status with a
single glance at the available metrics and graphs with the added ability to investigate historical performance

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 27

data. Currently Zookeeper, Apache Kafka, Schema Registry, Rest Proxy and Kafka Connect are monitored
providing the following information:

 Zookeeper: Quorum Size, Alive Connections, Number of ZNodes, Number of Watchers.
 Kafka: Brokers Online, Active Controllers, Unclean Leader Election Rate, Online Partitions, Under

Replicated Partitions, Offline Partitions Count, CPU Usage Per Broker (graph), JVM Memory Used Per
Broker (graph), Time Spent in GC (graph), Messages In Per Topic (graph), Bytes In Per Topic (graph), Bytes
Out Per Topic (graph), Messages In Per Broker (graph), Bytes In Per Broker (graph), Bytes Out Per Broker
(graph).

 Schema Registry: Number of Kafka Schema Registry Servers, Active Connections, Open Rate, Close Rate.
 Rest Proxy: Number of Kafka Rest Servers, Active Connections, Open Rate, Close Rate.
 Kafka Connect: Number of Connectors, Connector Startup Success Total, Connector Startup Failure

Total, Number of Tasks, Task Startup Success Total, Task Startup Failure Total, IO Rate per Connect Node
(graph), Incoming Byte Rate per Connect Node (graph), Network IO Rate per Connect Node (graph).

The above information is very helpful when administering the Platform and monitoring Connector and Client
performance and is a valuable tool during development and performance tests.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 28

Figure 4.3 The Track&Know Cluster Overview Dashboard

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 29

4.1.2 Kafka Manager

Another tool that is provided with the Track&Know Platform, depicted in the following figures, is an open source
tool developed by Yahoo for managing Apache Kafka Clusters. Kafka Manager [13] enables the user to inspect
interesting aspects of the cluster including the number and state of Brokers, name and partitions of existing
topics with number of messages and information regarding the way that individual partitions of topics are
distributed among the cluster brokers. Furthermore, it allows a user to perform various administration tasks
including listing of topics, creation of new topics with the ability to specify the number of partitions and
replication factor, deletion of topics etc. Kafka Manager has been configured to work with the Track&Know
Platform and is available to assist in administration and development tasks.

Figure 4.4 Kafka Manager displaying Brokers

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 30

Figure 4.5 Kafka Manager displaying Topic details

4.1.3 Kafka Connect UI

The Kafka Connect UI [14] tool is a web-based interface that allows a user to setup, manage and gain an overview
of the existing connectors in a Kafka Connect cluster. This open source tool can display the nodes that resemble
the cluster and the running connectors per node, together with an overview of the running topology that depicts
the source and sink connectors and the related topics. A very helpful feature of the tool is the ability to list the
installed connectors in the cluster, pick the connector of interest and after providing the necessary configuration,
start the connector. This feature is available for existing community connectors and also for custom connectors
and has already been used to configure start, pause and restart Track&Know custom connectors in the process
of their initial development.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 31

Figure 4.6 Kafka Connect UI displaying Connect Cluster

Figure 4.7 Kafka Connect UI displaying Connectors

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 32

5 Track & Know Datasets and Connectors

The available datasets within Track&Know originate mainly from partners VFI, SIS and PAP, detailed information
for which can be found in deliverable D6.1 [1]. Partner VFI has provided historical fleet mobility data in CSV files
organised in anonymised customer folders and has also provided a live data feed of mobility data for the vehicles
that it monitors, via a REST API with the data in JSON format.

Partner SIS has provided access to a MongoDB instance, which was setup on their premises for accessing the
data made available to the Consortium. The MongoDB contains a total of 5 collections split in 2 databases.
Collection DATASET1 contains the main mobility data with relative GPS coordinates while collections CRASH and
EVENTS contain accident and other type of important events respectively. The POSITIONS and VOUCHER
collections of the database contain places of interest and insurance vouchers information. All the SIS data are
stored as MongoDB documents and are retrieved in JSON format.

Regarding the data that partner PAP has made available, they consist of data related to the patients’ journeys
from residence to clinic, obtained by reconstructing GPS traces, directions, route timings and a poly-line as a
GeoJSON for each individual appointment from existing appointment data. A plan also exists for introducing a
purpose-built smartphone mobility data logger app developed by VFI, which provides patient journey
information. It is planned for this data to be made available via a REST API in JSON format, in a similar way to the
live feed of fleet mobility data described above. In cases where mobile networking costs should be avoided in a
planned experiment, the app can delay transmission of accumulated data until WIFI is available. When operating
in this mode the gathered data will be provided by using the same approach as for the VFI historical fleet mobility
data. For the patient journeys data, a Producer type connector has been developed whereas for the logger app
a Kafka Connect type of connector has been developed.

The data provided by the partners are loaded to the Track&Know platform by using a set of custom connectors
implemented by using the Producer and Kafka Connect APIs. The language used for the implementation is Java
(compatible with JDK 1.8 u31 or later) and the source code is under version control residing in private Git
projects/repositories hosted in GitLab.com:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 33

Figure 5.1 The Track&Know repository

The Connectors assume Apache Kafka V2.0 with Kafka Connect in a distributed deployment. In the Track&Know
platform a 3-node Apache Kafka Brokers deployment is in place with an additional 3-node Kafka Connect Worker
distributed setup. The deployment and usage of connectors is performed on virtual hosts running CentOS Linux
(v7.6). It should be noted that all communications between the Connectors and the Track&Know Platform are
encrypted (TLS v1.2) and compression is enabled using the Snappy algorithm.

5.1 VFI Data Connectors
In this section the connectors implemented for introducing the VFI data to the Track&Know platform are
discussed, presenting information about their usage, configuration, startup and monitoring.

5.1.1 Kafka Producer type Connector for the VFI historical data

The dataset containing the VFI historical mobility data was made available in folders which contain multiple CSV
files, with the latter holding the mobility data originating from the vehicles in question. Each folder represents
an anonymised customer and the structure can be seen below:

Figure 5.2 VFI customer data folders

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 34

Several CSV files exist in every customer directory and are organised as follows:

Figure 5.3 VFI data in CSV files

The data inside each one of the files are organised according to the following header:

company;vehicle;localDate;engineStatus;driver;driverEvent;longitude;latitude;altitu
de;angle;speed;odometer;satellites;fuelLevelLt;countryCode;rpm;levelType;fuelTankSi
ze;vehicleOdometer;fuelConsumed;engineHours;closeToGasStation;deviceType;VehicleTyp
e;fuelRawValue;

A sample of the data inside a file can be seen below:

Figure 5.4 VFI file contents

Taking in account the above, it was decided to create a connector that could (if needed) upload the data in
parallel. The approach that was adopted resulted in a Producer that can be run in several hosts at the same time
and utilise multiple threads per instance for the reading and writing of the messages to the Apache Kafka Cluster.

When started, the Producer checks its configuration file which indicates the parent directory in which the
customer folders are located. In the case that a single Producer instance is configured, it will proceed to ingest
all the data by traversing each customer folder. If more instances are configured (e.g. 5) then the total customer
folders number is divided accordingly, and a subset of them is assigned to each instance, effectively spreading
the task among them. The separate instances of the Producer only make sense when started on a different host.
For this reason, the Customer folders including all the CSV files are located on a dedicated node with the parent
folder mounted via SSHFS on each and every other host where the Producer is run. The setup can be seen in the
diagram below and it serves the purpose of making available the data to all the other nodes running Producer
instances:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 35

Figure 5.5 Parallelisation of the VFI data loading

As mentioned above, the multiple threads that can be configured on each Producer instance allow the maximum
CPU utilisation of each Producer node, maximising the throughput. The Producer threads are equally assigned
between them several customer folders from the subset that is assigned to this Producer instance.

Once the Producer instances are started, the individual threads begin to read customer folders in parallel. The
files inside each customer folder are sorted in a chronological order according to their filename and are one by
one loaded and parsed. Each line results in a message that is sent to the Kafka Topic of choice. If the destination
Kafka Topic has more than one partition configured, then the messages are introduced to the applicable partition
based on the customer number.

Due to the fact that a Customer folder is assigned to only one Producer instance and also because this folder will
be processed entirely by a single thread of this Producer instance, the ordering of messages will be preserved
within the destination partition of the Topic. This guarantees that the data for a particular customer will be
written in the order that they are read from the CSV files. Because multiple threads exist which may write other
customer data to the same partition, there is interleaving of customer messages within a specific partition but
the order of messages of a specific customer is always preserved. Subsequent enrichment tasks have been found
to work fine with the above and can parallelise in a way that is similar to what has been presented.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 36

The connector implementation also includes a small cleaning feature which proved to be necessary as the
provided CSV files were found in some cases to include the Unicode Byte order mark (BOM - Character
U+FEFF) that is removed. Furthermore, another version of the connector was implemented that is capable of
discarding messages that contain GPS coordinates outside the Europe rectangle prior to loading them to the
Kafka Topic. Although it was found that performance was not impacted, it was chosen to assign this functionality
to WP3 developed toolboxes as it was decided that it better fits their purpose.

The Connector is packaged in a jar and can be built from the sources by using mvn clean, compile and assembly:
single as it can be seen below (IntelliJ IDE):

Figure 5.6 Building and assembling the VFI batch producer

The jar that is produced can then be copied to the VMs that the Connector will be run. Alternatively, the code
can be pulled at a VM and the connector can be built there. Once the jar is built it should be made executable
(sudo chmod +x) and placed in a folder of choice together with its property file:

Figure 5.7 Producer jar and properties file

The property file must have the name vfibatchproducer.properties and exist in the same folder as the jar,
otherwise it cannot be read and the connector will fail to start. The Connector uses encryption (TLSv1.2) and

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 37

compression (Snappy algorithm) while sending data to Apache Kafka and offers configurable batching and exactly
once delivery. These and other properties are configured in the properties file and are explained below in more
detail (example shown):

Table 3 Properties and sample values for the VFI batch producer

Property and Sample value (Example) Description

work.with.dir=/home/wp3user04/vfi-sample-data The directory in which the batch connector will look
for data. The data should be organised in the format
provided by VFI i.e. client folders which contain csv
files.

topic=wp3-user04-test1 The Kafka topic that this connector will write data to

worker.threads.count=8 The number of worker threads that this connector
instance will employ when writing data

producer.id=0 The id of this producer. If there are multiple, then all
must have different ids.

total.producers=5 The total number of producers. The loading task will
be split among them and they will run in parallel.

key.serializer=

org.apache.kafka.common.serialization.StringSerializer

The serializer used for the message key

value.serializer=

org.apache.kafka.common.serialization.StringSerializer

The serializer used for the message value

bootstrap.servers=static.165.253.201.195.clients.your-
server.de:9093,static.166.253.201.195.clients.your-
server.de:9093,static.171.253.201.195.clients.your-
server.de:9093

These are the 3 Kafka Brokers to which the
Connector will send data. Note that port 9093 is
used because only encrypted connections are
allowed.

security.protocol=SSL Authentication and encryption settings – Enables
security.

ssl.enabled.protocols=TLSv1.2 Authentication and encryption settings – Enforces
TLSv1.2

ssl.truststore.location=

/home/wp3user04/ssl/kafka.client.truststore.jks

Authentication and encryption settings – Location of
the Truststore that will be used to test Broker
certificates.

ssl.truststore.password=password Authentication and encryption settings – Truststore
password

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 38

ssl.keystore.location=

/home/wp3user04/ssl/kafka.client.keystore.jks

Authentication and encryption settings – Location of
the Keystore where this Producer’s certificate is
stored.

ssl.keystore.password= password Authentication and encryption settings – Keystore
password

ssl.key.password= password Authentication and encryption settings – Key
password

enable.idempotence=true Setting for idempotent producer. This will enable
exactly once delivery.

acks=all Setting required for idempotent producer. This will
enable acks from all replicas.

retries=2147483647 Setting required for idempotent producer. This will
enable max number of retries of failed messages.

max.in.flight.requests.per.connection=5 Setting required for idempotent producer. This will
enable at most 5 unacknowledged messages while
sending data.

compression.type=snappy Compression algorithm used

linger.ms=5 Performance specific settings. Time to wait for a
batch to fill. Optimal values may vary depending on
cluster, message sizes etc.

batch.size=16384 Performance specific settings. Batch size. Optimal
values may vary depending on cluster, message
sizes etc.

request.timeout.ms=10000 Performance specific settings. Time to wait for a
request to complete. Optimal values may vary
depending on cluster, message sizes etc.

The above properties must be configured before the Connector can be started. Ensure that the topic is created
beforehand and according to replication, partitioning, retention and size needs:

1. Please ensure that the topic where the data will be loaded has been created before starting the VFI Batch
Producer Connector instances:

Figure 5.8 Topic creation for VFI batch data

The topic just created can be seen in Kafka Manager presented in earlier sections of the document:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 39

Figure 5.9 Topic for VFI in Kafka Manager

2. At this point the vfibatchproducer.properties file, where the jar loads properties from, should be edited. The
topic just created should be set accordingly (in this example “d23-vfi-batch”). Also, the directory where the data
to be loaded reside should be valid.

3. The Connector can be started by using the command below. The memory it is allowed to use can be increased
for better performance.

Figure 5.10 VFI batch connector startup command

 Below a single connector can be seen while starting up:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 40

Figure 5.11 VFI batch connector startup output

4. Incoming message rates for the topic created can be observed in the Grafana Cluster Overview. The image
below shows interesting information about the performance of the connector just started:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 41

Figure 5.12 Incoming message rates for VFI batch data

The CPU usage shown in the top left graph indicates the cores utilised on the 3 Apache Kafka Brokers that exist
in the Track &Know Platform. Out of the total 8 vCPUs per node (total of 24 Cores) only roughly 4 cores are used
(something that we have noticed to stay at this level even with multiple data loading tasks). On the right it can
be seen that the “JVM Memory Used” is also very low. The Brokers have 32GB of RAM available each (total of
96GB), with only about 14GB used in this run. It can be seen in the graph titled “Messages in Per Topic” above
that the message rates climb up to 500 – 550 thousand messages per second. In the middle right the graph with
title “Messages in Per Broker” shows that the messages are handled by all three brokers. The lower left graph
with title “Total Messages per Topic” is focused on the “d23-vfi-batch” topic which is used for this deliverable
test and it shows the messages increasing in the topic to reach a total of 486 million messages before the
experiment is killed.

In this experiment it should be noted that the message rates achieved are with encryption and compression
enabled and also the replication factor is set to 2 which means that the messages are copied twice between
brokers for high availability.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 42

Since the Producer Connector for the VFI batch data can be run in parallel it is interesting to present a run where
multiple instances are started on multiple hosts. This can be achieved by starting the connectors as shown below
where 5 instances are started:

Figure 5.13 Multiple producers startup

Incoming message rates for the topic created can be observed in the Grafana Cluster Overview. The image below
shows interesting information about the performance of the connectors just started:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 43

Figure 5.14 Incoming message rates with multiple producers

The CPU usage shown in the top left graph indicates that it remained at the same levels even though the message
rate has more than tripled. The same thing holds for the “JVM Memory Used” which has no significant change.
The message rate reaches a peak of 2 Million messages per second where it begins to drop as the multiple
threads finish their portion of the task and release resources. In cases where more data are to be processed, the
message rate is sustained and will rise further. It is noteworthy that the total of about 542 Million messages
contained in the historical dataset provided by VFI (about 100GB of data) is loaded in under 8 minutes. This
indicates that billions of messages can be processed within an hour. It should be noted that the message
number is more important to the message size as it is more challenging to handle many small messages vs
fewer larger ones and that the message rates would have been significantly higher if the encryption that the
Track&Know use cases dictate was not needed.

The figure below shows the graphs when the same task shown above has finished:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 44

Figure 5.15 Multiple producers (experiment finished)

A comparison between a single and multiple connector runs can be seen below.

Table 4 VFI batch data loading runs

Run 1 Producers Threads per Producer Message Rate

 1 10 516 Thousand messages per second

Run 2 Producers Threads per Producer Message Rate

 5 10 2 Million messages per second

During the loading or once the data is loaded in the topic of choice, it can be read by clients for subsequent
processing. By using the command below, JSON messages can be retrieved (read) from the topic of choice (here
vfi-batch -1 – similar for vfi-batch-0) and displayed in the console:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 45

Figure 5.16 Reading VFI batch data from topic

Sample of String (CSV) data as they exist in topic vfi-batch-0 and topic vfi-batch-1:

Figure 5.17 Sample of VFI batch data message

 Please note that the empty values in the CSV represent fields that were not available/not set. The column names
applicable to that data are the same that apply to the original CSV files provided by VFI:

company;vehicle;localDate;engineStatus;driver;driverEvent;longitude;latitude;altitu
de;angle;speed;odometer;satellites;fuelLevelLt;countryCode;rpm;levelType;fuelTankSi
ze;vehicleOdometer;fuelConsumed;engineHours;closeToGasStation;deviceType;VehicleTyp
e;fuelRawValue;

5.1.2 Kafka Connect type Connector for the VFI live data

For the purpose of introducing the VFI live data to the Track&Know Platform the Kafka Connect functionality was
used. More specifically a custom Kafka Connect Source Connector was developed which is deployed in a highly
available Connect Cluster. Once the connector is instantiated the Connect Cluster Workers perform the work of
retrieving the VFI live data and load them into the topic of choice according to the code of the connector and its
configuration. In the case of failure of a specific worker node, the other remaining nodes of the cluster will
continue to run the connector code. This means that even at the case of failure of a node, the VFI live data will
continue to enter the Platform. At configurable intervals the connector pulls the live data from a provided REST
API and for a set number of vehicles. The data retrieved are then written to a Kafka topic of choice. The VFI API
provides the data in JSON format and the connector supports serialisation in both JSON and Avro. Authentication
and encryption settings are already setup between the Kafka Connect Workers and the Kafka Brokers and no
setup is necessary for individual connectors.

The connector and other required jars are built using mvn clean compile package which produces a target folder
containing the jars. This folder is then moved to the dedicated directory of each Worker node of the Kafka
Connect Cluster and this way the connector code is available and can be instantiated.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 46

Figure 5.18 Building the VFI live data connector

The contents of the connectors directory (here connect-jars) can be seen below. The VFI live data connector
exists in the vfi-connect-test-1.0.0 directory:

Figure 5.19 Kafka Connect jars directory

For the purpose of starting a Kafka Connect type of connector, the Kafka Connect UI component is set up where
all the connectors inside the Workers directory and the running connectors can be seen:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 47

Figure 5.20 Kafka Connect UI for starting connectors

The available installed connectors can be accessed by pressing the “NEW” button. After Selecting a particular
connector (Here the VFI connector) the configuration has to be entered.

Figure 5.21 Selecting a new Connector

In the figure below the VfiRtSourceConnector has been selected and its configuration window is shown:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 48

Figure 5.22 Configuring a Kafka Connect Connector

In detail, the configuration options are listed in the following table together with their description:

Table 5 Configuration options for the VFI live data connector

Property and Sample value (Example) Description

name=VfiRtSourceConnector The name of this connector instance. There may be many
instances with different names

connector.class=com.ioannis.connect.VfiRtSour
ceConnector

The type of connector which is actually the connector’s
java class

interval-secs=60 How often data should be retrieved from the VFI API. At
this stage the minimum should be 60 seconds.

tasks.max=1 The number of tasks this connector should start.

api-token=sampleToken7fbb8856b6eb The API token used – Provided by VFI.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 49

endpoint-url=http://tk.zelitrack.net/api/data The URL of the REST endpoint that provides the data.

value.converter.schema.registry.url=http://stati
c.185.253.201.195.clients.your-server.de:8081

The schema registry url where the value schema is held.

fetch-items=1000 The number of items (vehicles) for which data will be
returned. The maximum allowed is 1000

vfi-rt-topic=vfi-rt-1 The topic where the retrieved data will be written in Kafka

value.converter=io.confluent.connect.avro.Avro
Converter

The Converter used for the value. Here is Avro but can also
be JSON

key.converter=io.confluent.connect.avro.AvroC
onverter

The Converter used for the Key. Here is Avro but can also
be JSON

key.converter.schema.registry.url=http://static.
185.253.201.195.clients.your-server.de:8081

The schema registry url where the key schema is held.

Currently there are 4 Kafka Connect VFI Connectors which have been running continuously for a time period of
about 80 days. These connectors are accumulating vehicle data in JSON and Avro formats with a single and
multiple partitions in the target topics:

Figure 5.23 VFI live data connectors running

As it can be seen in the figure above, the total number of messages is above 110 million. Toolboxes can access
that data from their beginning or any other offset and at whatever rate is applicable. Of course, a client can
connect to the above live topics and begin receiving new data from that point onwards.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 50

By using the command below, JSON messages can be retrieved (read) from the topic of choice (here vfi-rt-json-
1 – similar for vfi-rt-json-0) and displayed in the console:

Figure 5.24 Reading VFI live data messages

Sample of JSON data as they exist in topics vfi-rt-json-0 and topics vfi-rt-json-1:

Figure 5.25 Sample of VFI live JSON data

By using the command below AVRO messages can be retrieved (read) from the topic of choice (here vfi-rt-1 –
similar for vfi-rt-json-0) and displayed in the console:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 51

Figure 5.26 Reading VFI live data messages (AVRO)

Sample of AVRO data as they exist in topics vfi-rt-0 and topics vfi-rt-1:

Figure 5.27 Sample of VFI live AVRO data

Empty fields represent values that did not exist.

Please note that while the data appear to be exactly the same as the JSON in the topics shown above, the main
difference with AVRO is that the Schema and Keys of the values within messages are not transmitted by the
producing and/or consuming end with each message as they are retrieved from the Schema Registry, reducing
thus overhead:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 52

Figure 5.28 Schema Registry entry for VFI live data

This section concludes the description of the connectors developed for the purpose of introducing the VFI
provided datasets and live data into the Track&Know Platform.

5.2 SIS Data Connectors
In this section the connectors implemented for introducing the SIS data to the Track&Know platform are
discussed, presenting information about their usage, configuration, startup and monitoring. The connectors
developed for this purpose are based on Kafka Connect technology and therefore in order to introduce the SIS
historical data to the Track&Know Platform the Kafka Connect functionality was used. More specifically, several
custom Kafka Connect Source Connectors were developed which deal with the data provided, with the latter
organised in a MongoDB standalone instance on SIS premises. The connectors are deployed in the highly
available Connect Cluster in the Track&Know Platform. Once a connector is instantiated the Connect Cluster
Workers perform the task of connecting to the SIS MongoDB instance, enable compression and batching and
proceeds to retrieve the data (for which the connector in question was developed), finally loading them into the
topic of choice according to the connector configuration. In the case of failure of a specific worker node, the
other remaining nodes of the cluster will continue to run the connector code. This means that even at the case
of failure of a node, the SIS data will continue to enter the Platform as the loading is resumed by another Worker.

The connector implementation for all SIS data connectors that will be presented in the following subsections
supports multiple tasks per connector. This means that the connectors are capable of starting automatically and
according to their configuration, more than one identical task, assigned to the Kafka Connect cluster Workers.
The implemented logic within the connectors indicates the way that the loading task should be split among the
multiple tasks of a connector. This effectively splits and parallelises the loading of data into a topic according to

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 53

the number of tasks. While the maximum number of tasks is in theory infinite, it should be made clear that as
the connectors and tasks increase the underlying number of available workers must be able to support them.
This can of course be achieved by introducing more Kafka Connect Worker nodes in the Track&Know Platform
which allows the processing of tasks to be re-balanced across the Workers and therefore allows horizontal
scalability to be achieved.

The data retrieved are written to Kafka topics of choice and according to the connector configuration. Especially
for the cases of the SIS datasets the Kafka topics used are set to have a small retention period which guarantees
that the datasets provided and loaded to the Track&Know Platform will never be stored permanently in its
entirety according to what the signed agreements between SIS and other partners dictate. The SIS data exist as
MongoDB documents and are stored in the topics in JSON format. Authentication and encryption settings are
already setup between the Kafka Connect Workers and the Kafka Brokers and no setup is necessary for individual
connectors. The connectors are also implemented with exactly once delivery semantics in mind. This ensures
that data read from the relative MongoDB collections will not result in duplicate messages within the target Kafka
Topic. This is achieved by maintaining a source index which is stored together with each message in Kafka and
allows processing to be idempotent and be resumed if necessary.

Similar to the other Kafka Connect code presented, the connectors and other required jars are built using mvn
clean compile package which produces a target folder containing the jars. This folder is then moved to the
dedicated directory of each Worker node of the Kafka Connect Cluster and this way the connector code is
available and can be instantiated.

Figure 5.29 Building SIS connectors

The contents of the connectors directory (here connect-jars) can be seen below. The SIS connectors exist in the
sis-connect-test-1.0.0 directory:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 54

Figure 5.30 Kafka Connect jars directory with SIS connectors

5.2.1 Kafka Connect type Connector for the SIS DATASET1 data

The data provided by SIS which contain the main mobility information with the respective vehicle GPS locations
were made available in a MongoDB instance which was setup in their (SIS) premises and it is accessed over the
network with the credentials provided. The database and related collection are named dataset1 and DATASET1
respectively. A small portion of the data can be seen in the screenshot below taken from the MongoDB Compass
Client while the latter is connected to the remote database and collection:

Figure 5.31 SIS DATASET1 collection

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 55

For the purpose of starting a SIS Kafka Connect type of connector, the Kafka Connect UI component is used all
the connectors inside the Workers directory and the running connectors can be seen:

Figure 5.32 Kafka Connect UI and running connectors

The available installed connectors can be accessed by pressing the “NEW” button. After Selecting a particular
connector (Here the SisSource connector) the configuration has to be entered.

Figure 5.33 Selecting the DATASET1 connector

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 56

In the figure below the SisSourceConnector has been selected and its configuration window is shown:

Figure 5.34 Configuring the DATASET1 connector

In detail, the configuration options are listed in the following table together with their description:

Table 6 SIS DATASET1 connector configuration options

Property and Sample value (Example) Description

name=SisSourceConnector The name of this connector instance. There may be
many instances with different names

connector.class=com.ioannis.connect.SisSourceConn
ector

The type of connector which is actually the
connector’s java class

tasks.max=1 The max number of tasks this connector should start.

sis-topic=d23-sis-dataset1 The topic where the retrieved data will be written in
Kafka

key.converter=org.apache.kafka.connect.json.JsonC
onverter

The converter used for the message key (here JSON is
used)

value.converter=org.apache.kafka.connect.json.Json
Converter

The converter used for the message value (here JSON
is used)

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 57

errors.log.enable=true Enables or disables error logging

errors.log.include.messages=true Controls whether the error messages are included in
the logs

mongodb-user-database=admin The database collection to authenticate against

mongodb-host=93.46.200.55 The host IP where the MongoDB instance is running

mongodb-port=27017 The host port where the MongoDB instance is running

mongodb-database-name=dataset1 The database name where the collection is in

mongodb-collection-name=DATASET1 The name of the collection to be read

mongodb-batch-size=40000 The batch size that will be used

mongodb-pass=********* The password to access the database

kafka-send-every-num-of-records=40000 The number of records that when gathered will be
sent to Kafka.

value.converter.schema.registry.url=http://static.18
5.253.201.195.clients.your-server.de:8081

The url for the value schema registry

value.converter.schemas.enable=false Setting to control whether the schema should also be
sent

key.converter.schema.registry.url=http://static.185.
253.201.195.clients.your-server.de:8081

The url for the key schema registry

5.2.2 Kafka Connect type Connector for the SIS CRASH data

The data provided by SIS which contain information about accidents which have occurred and are related to the
dataset were also made available in the same MongoDB instance setup in SIS premises and accessed over the
network with provided credentials. The database and related collection are named dataset2 and CRASH
respectively. A small portion of the data can be seen in the screenshot below taken from the MongoDB Compass
Client while the latter is connected to the remote database and collection:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 58

Figure 5.35 SIS CRASH collection

The available installed connectors can be accessed by pressing the “NEW” button in the Kafka Connect UI. After
Selecting a particular connector (Here the SisCrashSourceConnector) the configuration has to be entered.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 59

Figure 5.36 Selecting the CRASH connector

In the figure below the SisCrashSourceConnector has been selected and its configuration window is shown:

Figure 5.37 Configuring the CRASH connector

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 60

In detail, the configuration options are listed in the following table together with their description:

Table 7 SIS CRASH connector configuration options

Property and Sample value (Example) Description

name=SisCrashSourceConnector The name of this connector instance. There may be
many instances with different names

connector.class=com.ioannis.connect.crash.SisCras
hSourceConnector

The type of connector which is actually the
connector’s java class

tasks.max=1 The max number of tasks this connector should start.

sis-topic=d23-sis-crash The topic where the retrieved data will be written in
Kafka

key.converter=org.apache.kafka.connect.json.JsonC
onverter

The converter used for the message key (here JSON is
used)

value.converter=org.apache.kafka.connect.json.Json
Converter

The converter used for the message value (here JSON
is used)

errors.log.enable=true Enables or disables error logging

errors.log.include.messages=true Controls whether the error messages are included in
the logs

mongodb-user-database=admin The database collection to authenticate against

mongodb-host=93.46.200.55 The host IP where the MongoDB instance is running

mongodb-port=27017 The host port where the MongoDB instance is running

mongodb-database-name=dataset2 The database name where the collection is

mongodb-collection-name=CRASH The name of the collection to be read

mongodb-batch-size=40000 The batch size that will be used

mongodb-pass=********* The password to access the database

kafka-send-every-num-of-records=40000 The number of records that when gathered will be
sent to Kafka.

value.converter.schema.registry.url=http://static.18
5.253.201.195.clients.your-server.de:8081

The url for the value schema registry

value.converter.schemas.enable=false Setting to control whether the schema should also be
sent

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 61

key.converter.schema.registry.url=http://static.185.
253.201.195.clients.your-server.de:8081

The url for the key schema registry

5.2.3 Kafka Connect type Connector for the SIS EVENTS data

Similarly, data provided by SIS which contain information about events of interest that occurred and are related
to the dataset were also made available in the same MongoDB instance setup in SIS premises and accessed over
the network with the provided credentials. The database and related collection are named dataset2 and EVENTS
respectively. A small portion of the data can be seen in the screenshot below taken from the MongoDB Compass
Client while the latter is connected to the remote database and collection:

Figure 5.38 SIS EVENTS collection

The available installed connectors can be accessed by pressing the “NEW” button in the Kafka Connect UI. After
Selecting a particular connector (Here the SisEventsSourceConnector) the configuration has to be entered.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 62

Figure 5.39 Selecting the EVENTS connector

In the figure below the SisEventsSourceConnector has been selected and its configuration window is shown:

Figure 5.40 Configuring the EVENTS connector

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 63

In detail, the configuration options are listed in the following table together with their description:

Table 8 SIS EVENTS connector configuration options

Property and Sample value (Example) Description

name=SisEventsSourceConnector The name of this connector instance. There may be many
instances with different names

connector.class=com.ioannis.connect.crash.Sis
EventsSourceConnector

The type of connector which is actually the connector’s
java class

tasks.max=1 The max number of tasks this connector should start.

sis-topic=d23-sis-events The topic where the retrieved data will be written in Kafka

key.converter=org.apache.kafka.connect.json.Js
onConverter

The converter used for the message key (here JSON is used)

value.converter=org.apache.kafka.connect.json.
JsonConverter

The converter used for the message value (here JSON is
used)

errors.log.enable=true Enables or disables error logging

errors.log.include.messages=true Controls whether the error messages are included in the
logs

mongodb-user-database=admin The database collection to authenticate against

mongodb-host=93.46.200.55 The host IP where the MongoDB instance is running

mongodb-port=27017 The host port where the MongoDB instance is running

mongodb-database-name=dataset2 The database name where the collection is in

mongodb-collection-name=EVENTS The name of the collection to be read

mongodb-batch-size=40000 The batch size that will be used

mongodb-pass=********* The password to access the database

kafka-send-every-num-of-records=40000 The number of records that when gathered will be sent to
Kafka.

value.converter.schema.registry.url=http://stati
c.185.253.201.195.clients.your-server.de:8081

The url for the value schema registry

value.converter.schemas.enable=false Setting to control whether the schema should also be sent

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 64

key.converter.schema.registry.url=http://static.
185.253.201.195.clients.your-server.de:8081

The url for the key schema registry

5.2.4 Kafka Connect type Connector for the SIS POSITIONS data

In the same way, data provided by SIS which contain information about positions of interest that are related to
the dataset were also made available in the same MongoDB instance setup in SIS premises and accessed over
the network with the provided credentials. The database and related collection are named dataset2 and
POSITIONS respectively. A small portion of the data can be seen in the screenshot below taken from the
MongoDB Compass Client while the latter is connected to the remote database and collection:

Figure 5.41 SIS POSITIONS collection

For the purpose of starting a SIS Kafka Connect type of connector, the Kafka Connect UI component is used all
the connectors inside the Workers directory and the running connectors can be seen:

The available installed connectors can be accessed by pressing the “NEW” button in the Kafka Connect UI. After
Selecting a particular connector (Here the SisPositionsSourceConnector) the configuration has to be entered.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 65

Figure 5.42 Selecting the POSITIONS connector

In the figure below the SisPositionsSourceConnector has been selected and its configuration window is shown:

Figure 5.43 Configuring the POSITIONS connector

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 66

In detail, the configuration options are listed in the following table together with their description:

Table 9 SIS POSITIONS connector configuration options

Property and Sample value (Example) Description

name=SisPositionsSourceConnector The name of this connector instance. There may be many
instances with different names

connector.class=com.ioannis.connect.positions
.SisEventsPositionsConnector

The type of connector which is actually the connector’s
java class

tasks.max=1 The max number of tasks this connector should start.

sis-topic=d23-sis-positions The topic where the retrieved data will be written in Kafka

key.converter=org.apache.kafka.connect.json.Js
onConverter

The converter used for the message key (here JSON is used)

value.converter=org.apache.kafka.connect.json.
JsonConverter

The converter used for the message value (here JSON is
used)

errors.log.enable=true Enables or disables error logging

errors.log.include.messages=true Controls whether the error messages are included in the
logs

mongodb-user-database=admin The database collection to authenticate against

mongodb-host=93.46.200.55 The host IP where the MongoDB instance is running

mongodb-port=27017 The host port where the MongoDB instance is running

mongodb-database-name=dataset2 The database name where the collection is in

mongodb-collection-name=POSITIONS The name of the collection to be read

mongodb-batch-size=40000 The batch size that will be used

mongodb-pass=********* The password to access the database

kafka-send-every-num-of-records=40000 The number of records that when gathered will be sent to
Kafka.

value.converter.schema.registry.url=http://stati
c.185.253.201.195.clients.your-server.de:8081

The url for the value schema registry

value.converter.schemas.enable=false Setting to control whether the schema should also be sent

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 67

key.converter.schema.registry.url=http://static.
185.253.201.195.clients.your-server.de:8081

The url for the key schema registry

5.2.5 Kafka Connect type Connector for the SIS VOUCHER data

Information related to the insurance voucher activation and the vehicles themselves was also provided by SIS
and were made available in the same MongoDB instance setup in SIS premises and accessed over the network
with the provided credentials. The database and related collection are named dataset2 and VOUCHER
respectively. A small portion of the data can be seen in the screenshot below taken from the MongoDB Compass
Client while the latter is connected to the remote database and collection:

Figure 5.44 SIS VOUCHER collection

The available installed connectors can be accessed by pressing the “NEW” button in the Kafka Connect UI. After
Selecting a particular connector (Here the SisVoucherSourceConnector) the configuration has to be entered.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 68

Figure 5.45 Selecting the VOUCHER connector

In the figure below the SisVoucherSourceConnector has been selected and its configuration window is shown:

Figure 5.46 Configuring the VOUCHER connector

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 69

In detail, the configuration options are listed in the following table together with their description:

Table 10 SIS VOUCHER connector configuration options

Property and Sample value (Example) Description

name=SisVoucherSourceConnector The name of this connector instance. There may be
many instances with different names

connector.class=com.ioannis.connect.voucher.Sis
VoucherSourceConnector

The type of connector which is actually the connector’s
java class

tasks.max=1 The max number of tasks this connector should start.

sis-topic=d23-sis-voucher The topic where the retrieved data will be written in
Kafka

key.converter=org.apache.kafka.connect.json.Json
Converter

The converter used for the message key (here JSON is
used)

value.converter=org.apache.kafka.connect.json.Jso
nConverter

The converter used for the message value (here JSON is
used)

errors.log.enable=true Enables or disables error logging

errors.log.include.messages=true Controls whether the error messages are included in
the logs

mongodb-user-database=admin The database collection to authenticate against

mongodb-host=93.46.200.55 The host IP where the MongoDB instance is running

mongodb-port=27017 The host port where the MongoDB instance is running

mongodb-database-name=dataset2 The database name where the collection is in

mongodb-collection-name=VOUCHER The name of the collection to be read

mongodb-batch-size=40000 The batch size that will be used

mongodb-pass=********* The password to access the database

kafka-send-every-num-of-records=40000 The number of records that when gathered will be sent
to Kafka.

value.converter.schema.registry.url=http://static.1
85.253.201.195.clients.your-server.de:8081

The url for the value schema registry

value.converter.schemas.enable=false Setting to control whether the schema should also be
sent

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 70

key.converter.schema.registry.url=http://static.185
.253.201.195.clients.your-server.de:8081

The url for the key schema registry

5.2.6 Introducing SIS datasets to the Track&Know Platform

By using the instructions presented in the previous sections of this chapter it is possible to start the SIS
connectors and begin introducing data to the Kafka topics of choice. The similarities in the configuration and the
actual SIS connectors presented are mainly due to the fact that the underlying task is extracting data from
MongoDB and subsequently loading it into Kafka Topics. The main differences reside in the queries that each
connector performs against the collection it is using and the actual objects employed to serialise and transmit
the data to Kafka according to the Kafka Connect paradigm, which are interdependent to the different schemas
applicable to each dataset in the MongoDB.

Before starting a connector, it is always advisable to create the topic that the data will be loaded. The figure
below shows the creation of topics which are used to demonstrate the connectors. Specifically, for the SIS
datasets a retention period must be set which makes the data vanish after a configurable time interval. For the
examples below a 10 minute (600000 milliseconds) retention period is set:

Figure 5.47 Creating the SIS topics

The topics just created can be seen in Kafka Manager as discussed in earlier sections of the document:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 71

Figure 5.48 SIS topics seen in the Kafka Manager

In the figure below the started connectors can be seen:

Figure 5.49 SIS Connectors running

The performance of the running connectors can be monitored in the Dashboard:

Figure 5.50 SIS Connectors at work

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 72

The message rates shown above are indicative at the time of writing, while performance tuning of the MongoDB
instance which makes the data available can further improve them as the Track&Know Platform can introduce
data into topics at higher message rates. It should be mentioned that the connectors support parallelism, variable
batch sizes and other performance configurations which facilitate performance tuning.

By using the command below, JSON messages can be retrieved (read) from the topic of choice (here d23-sis-
dataset-1 – similar for other SIS topics) and displayed in the console. The JSON format of the original data is
maintained:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 73

Figure 5.51 SIS topic data sample

In addition to the above presented connectors there also exist Producer type of connectors for all the SIS data
presented, which have been implemented and can be configured and run in a similar manner to what is described
in section 5.1.1 of this document. Furthermore, for the better utilisation of the provided data by the other WPs
it has been decided by SIS to produce a merged version of the datasets made available and presented in the
above sections. The merged dataset produced unifies the information contained in the various collections
presented above (except the VOUCHER information) in the METRICS Collection. The data is loaded by a single
connector to the Track&Know Platform in a similar way to what has been already presented.

5.3 PAP Data Connectors
In this section the connectors implemented for introducing the PAP data to the Track&Know platform are
discussed, presenting information about their usage, configuration, startup and monitoring.

5.3.1 Producer type Connector for the PAP reconstructed journey data

The reconstructed journey data contains information related to the patients’ journeys from their home to the
clinic by reconstructing GPS traces, directions, route timings and a poly line as a GeoJSON for each individual
appointment from existing data. The dataset was made available in multiple JSON (.json) files, with the latter
holding the related information. Several .json files exist in the data directory which resides on an encrypted
disk and is shared via SSHFS to other computing nodes (e.g. where a connector is run). All hosts in the platform
feature encrypted drives and it is worth mentioning that all communications between Connectors, the Kafka
Brokers, Toolbox code and clients in general are encrypted. The files are organised in a way that can be seen
in the figure below:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 74

Figure 5.52 PAP journey data in JSON files

Due to the confidential nature of the information, actual screenshots of the data cannot be shown. For the
purpose of documenting the structure of the JSON data, a figure with the values set to zero and omitted
information is provided:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 75

Figure 5.53 PAP journey data JSON sample

Taking in account the above, it was decided to create a connector that could (if needed) upload the data in
parallel. The approach that was adopted resulted in a Producer that can utilise multiple threads per instance for
loading the data and writing the messages to the Apache Kafka Cluster.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 76

The Connector is packaged in a jar and can be built from the sources by using mvn clean, compile and assembly
single as it can be seen below (IntelliJ IDE):

Figure 5.54 Building and assembling the PAP journey batch producer

The jar that is produced can then be copied to the VMs that the Connector will be run. Alternatively, the code
can be pulled at a VM and the connector can be built there. Once the jar is built it should be made executable
(sudo chmod +x) and placed in a folder of choice together with its property file:

Figure 5.55 Producer jar and properties file

The property file must have the name papbatchproducer.properties and exist in the same folder as the jar,
otherwise it cannot be read and the connector will fail to start. The Connector uses encryption (TLSv1.2) and
compression (Snappy algorithm) while sending data to Apache Kafka and offers configurable batching and exactly
once delivery. These and other properties are configured in the properties file and are explained below in more
detail (example shown):

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 77

Table 11 Properties and sample values for the VFI batch producer

Property and Sample value (Example) Description

topic=d23-pap-journeys The Kafka topic that this connector will write data to

work.with.dir=/home/tkcluster/sshfsshare/pap
data/journeys

The directory in which the batch connector will look for
data. The data should be organised in the format discussed
i.e. the folder should contain .json files.

worker.threads.count=8 The number of worker threads that this connector instance
will employ when reading in files and writing data

producer.id=0 The id of this producer. If there are multiple then all must
have different ids.

total.producers=1 The number of total producers. The loading task will be
split among them and they will run in parallel.

key.serializer=org.apache.kafka.common.seriali
zation.StringSerializer

The serializer used for the message key

value.serializer=org.apache.kafka.connect.json.J
sonSerializer

The serializer used for the message value

bootstrap.servers=static.165.253.201.195.client
s.your-
server.de:9093,static.166.253.201.195.clients.y
our-
server.de:9093,static.171.253.201.195.clients.y
our-server.de:9093

These are the 3 Kafka Brokers That the Connector will send
data to. Note that port 9093 is used because only
encrypted connections are allowed.

security.protocol=SSL Authentication and encryption settings – Enables security.

ssl.enabled.protocols=TLSv1.2 Authentication and encryption settings – Enforces TLSv1.2

ssl.truststore.location=

/home/wp3user04/ssl/kafka.client.truststore.jk
s

Authentication and encryption settings – Location of the
Truststore that will be used to test Broker certificates.

ssl.truststore.password=password Authentication and encryption settings – Truststore
password

ssl.keystore.location=

/home/wp3user04/ssl/kafka.client.keystore.jks

Authentication and encryption settings – Location of the
Keystore were this Producer’s certificate is stored.

ssl.keystore.password= password Authentication and encryption settings – Keystore
password

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 78

ssl.key.password= password Authentication and encryption settings – Key password

enable.idempotence=true Setting for idempotent producer. This will enable exactly
once delivery.

acks=all Setting required for idempotent producer. This will enable
acks from all replicas.

retries=2147483647 Setting required for idempotent producer. This will enable
max number of retries of failed messages.

max.in.flight.requests.per.connection=5 Setting required for idempotent producer. This will enable
at most 5 unacknowledged messages while sending data.

compression.type=snappy Compression algorithm used

linger.ms=5 Performance specific settings. Time to wait for a batch to
fill. Optimal values may vary depending on cluster,
message sizes etc.

batch.size=16384 Performance specific settings. Batch size. Optimal values
may vary depending on cluster, message sizes etc.

request.timeout.ms=10000 Performance specific settings. Time to wait for a request to
complete. Optimal values may vary depending on cluster,
message sizes etc.

The above properties must be configured before the Connector can be started. Ensure that the topic is created
beforehand and according to replication, partitioning, retention and size needs:

1. Please ensure that the topic where the data will be loaded has been created before starting the PAP/VFI Batch
Producer Connector

Figure 5.56 Topic creation for VFI/PAP journey data

The topic just created can be seen in Kafka Manager presented in earlier sections of the document:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 79

Figure 5.57 Topic for VFI/PAP data in Kafka Manager

2. At this point the papbatchproducer.properties file where the jar loads properties from should be edited. The
topic just created should be set accordingly (in this example “d23-pap-journeys”). Also, the directory where the
data to be loaded reside should be valid.

3. The Connector can be started by using the command below. The memory it is allowed to use can be increased
for better performance.

Figure 5.58 PAP/VFI batch connector startup command

Below a single connector can be seen while starting up:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 80

Figure 5.59 VFI/PAP journey connector startup output

4. Incoming message rates for the topic created can be observed in the Grafana Cluster Overview. The image
below shows interesting information about the performance of the connector. Due to the small size of data in
this experiment by the time that the incoming message rate climbs to 400 messages per second the total of
45334 journeys have been already loaded with total time taken to be around 60 seconds. The message rate
would continue to climb with a large enough dataset and the expected rates can scale to the metrics presented
in 5.1.1.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 81

Figure 5.60 Incoming messages and rates for PAP journeys

5.3.2 Kafka Connect type Connector for the VFI/PAP Smartphone app live data

For introducing the PAP/VFI live data from the developed smartphone logger app to the Track&Know Platform,
the Kafka Connect functionality was used. Again, a custom Kafka Connect Source Connector was developed to
be deployed in the highly available Connect Cluster of the Track&Know Platform. Once the connector is
instantiated the Connect Cluster Workers perform the work of retrieving the PAP/VFI live app data and load them
into the topic of choice, according to the connector code and its configuration. In the case of failure of a specific
worker node, the other remaining nodes of the cluster will proceed to run the connector code. This means that
even at the case of failure of a node, the VFI/PAP live data will continue to enter the Platform. At configurable
intervals the connector pulls the live data from a provided REST API and for a set number of vehicles, to be
written to a Kafka topic of choice. The VFI API for the smartphone app makes available the data in JSON format,
with the connector supporting serialisation in both JSON and Avro. Authentication and encryption settings are

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 82

already setup between the Kafka Connect Workers and the Kafka Brokers and no setup is necessary for individual
connectors.

The connector and other required jars are built using mvn clean compile package which produces a target folder
containing the jars. This folder is then moved to the dedicated directory of each Worker node of the Kafka
Connect Cluster and this way the connector code is available and can be instantiated.

Figure 5.61 Building the pap-vfi-live connector

The contents of the connectors directory (here connect-jars) can be seen below. The PAP-VFI live data connector
exists in the pap-vfi-live-connect directory:

Figure 5.62 The pap-vfi connector dir.

For the purpose of starting the connector, the Kafka Connect UI component is set up where all the connectors
inside the Workers directory and the running connectors can be seen. The available installed connectors can be
accessed by pressing the “NEW” button. After Selecting a particular connector (Here the PAP-VFI connector) the
configuration has to be entered.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 83

Figure 5.63 Selecting the PAP/VFI connector

In the figure below the PapVfiRtSourceConnector has been selected and its configuration window is shown:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 84

Figure 5.64 Configuring the PAP/VFI connector

In detail, the configuration options are listed in the following table together with their description:

Table 12 Configuration options for the PAP/VFI live data connector

Property and Sample value (Example) Description

name=PapVfiRtSourceConnector The name of this connector instance. There may be
many instances with different names

connector.class=com.ioannis.connect.PapVfiRtSourceCo
nnector

The type of connector which is actually the
connector’s java class

interval-secs=60 How often data should be retrieved from the VFI
API. At this stage the minimum should be 60
seconds.

tasks.max=1 The number of tasks this connector should start.

api-token=sampleToken7fbb8856b6eb The API token used – Provided by VFI.

endpoint-url=http://tk.zelitrack.net/api/papdata The URL of the REST endpoint that provides the
data.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 85

value.converter.schema.registry.url=http://static.185.2
53.201.195.clients.your-server.de:8081

The schema registry url where the value schema is
held.

fetch-items=100 The number of items (vehicles) for which data will
be returned. The maximum allowed is 1000

vfi-rt-topic=d23-pap-vfi-live The topic where the retrieved data will be written
in Kafka

value.converter=org.apache.kafka.connect.json.JsonCo
nverter

The Converter used for the value. Here is JSON but
can also be AVRO

key.converter=org.apache.kafka.connect.json.JsonConv
erter

The Converter used for the Key. Here is JSON but
can also be AVRO

key.converter.schema.registry.url=http://static.185.253
.201.195.clients.your-server.de:8081

The schema registry url where the key schema is
held.

Currently the Kafka Connect PAP/VFI Connector has been implemented and tested and it is ready to begin
introducing data originating from the usage of the VFI developed smartphone logger app. The connector will
operate in a similar fashion to the VFI live fleet data connector presented in section 5.1.2 and in an “always on”
mode. The connector is capable of accumulating vehicle data in JSON and Avro formats with a single and multiple
partitions in the target topics. Toolboxes can access that data from their beginning or any other offset and at
whatever rate is applicable. Of course, a client can connect to the live topic and begin receiving new data from
that point onwards.

Due to the incurring costs of transferring data over mobile networks the VFI/PAP logger app provides the
functionality of storing the data and uploading at a later stage, once WIFI is available. This approach although it
does not provide live data, it is probable to be employed in planned experiments as it will not interfere with the
participants mobile network traffic allowances and charging. For the purpose of introducing the data that has
been accumulated by VFI through the app operating in this mode, the connector used for the historical fleet data
and presented in section 5.1.1 of this document can be used.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 86

5.4 Other available Connectors
Apart from the presented custom connectors which have been developed specifically for the Track&Know data
sources, it is worth noting some other approaches that are available to be used if there is a need.

5.4.1 Introducing data by using the Rest Proxy

The Confluent REST Proxy is part of Confluent Open Source distribution and provides the functionality of a well-
defined REST interface to an Apache Kafka deployment. The interface provides the ability to list, create and
delete topics, retrieve information with respect to the partitioning of topics and the distribution of the partitions
between available brokers, produce or consume messages from a specific topic while also being able to retrieve
details about message offsets, and also retrieve information regarding the number of Cluster Brokers. In addition
to the functionality mentioned, it is also possible to alter Producer and Consumer configurations.

The importance of the REST Proxy becomes apparent in cases where there is a need to interact with an
application implemented using technologies that are not supported already by Kafka or in cases where an
administrative interface is built to better manage and review the state of the Cluster. In addition to that it allows
open source tools that are dependent on the Rest Proxy to be enabled and used to interact with the cluster,
further increasing the offered functionality to users. The Proxy also makes possible the scripting of various
administrative actions while enabling a stream processing framework that doesn’t support Kafka natively to
effectively use it as a data source. Finally, it makes possible to write messages to a specific topic by making REST
calls to the API which is the reason it is presented as an additional way to connect data to the Platform.

5.4.2 Connectors available in the Confluent Hub

The Confluent Hub [15] is the dedicated place where existing connectors can be found and can be used for
interconnecting a broad set of technologies and systems. Both Sources and Sinks are readily available which are
supported at various levels by Confluent or other renowned software companies, complemented by connectors
provided by and supported from the Community. Although the list of available connectors is very large, some
worth noting include the JDBC, HDFS, Couchbase DB, MongoDB, Elasticsearch, HBASE, Solr and Twitter to name
a few, while a full list can be found in [15]. Connectors can be run in both standalone mode or in a distributed
mode since a cluster is available in the Track&Know Platform which offers the scalability and automatic load
balancing characteristics that enable the connectors to support an entire organization by adding more workers
to a Cluster [9].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 87

6 Conclusions
Track & Know aims to develop a new software framework to increase the efficiency of Big Data applications in
the transport, mobility, motor insurance and health service sectors. With an efficient, scalable, industry-proven
communication platform serving as its “central nervous system” it is aimed to enable solutions that seamlessly
integrate truly capable Big Data toolboxes that can cope with increased loads of information irrespective to the
domain in question.

The Platform integrates and introduces the data sources made available by the Track&Know consortium by
extensively employing the modern and performant connector technologies that have been presented. By
introducing the data sources it supports and facilitates further the development of modular, generic, reusable
user-friendly toolboxes that will be readily applicable in the addressed markets. The Track&Know Platform will
provide the opportunity to all Pilot and Toolbox partners to utilise cutting edge and efficient approaches to
overcome barriers while gaining experience in how to best utilise new technologies and components on-boarded
by the Platform. The execution of the Pilots will demonstrate how these new technologies have indeed improved
their processes and products leading to cost, time and green efficiencies.

The proposed platform provides a robust, scalable and re-deployable infrastructure, addressing some of the
challenges and limitations faced within the Big Data industry and provides a framework to utilise and engage
with real-world datasets and problems by the technical partners during the course of development and
optimisation of toolboxes and the execution of Pilots.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 88

7 References

[1] Track&Know, "D6.1 Experiments Planning and Setup," June 2018.

[2] Track&Know, "D2.1 Architectures for the management of structured & unstructured data streams,"
December 2018.

[3] DataFlair, "Apache Kafka Use cases | Kafka Applications," DataFlair, [Online]. Available: https://data-
flair.training/blogs/kafka-use-cases-applications/. [Accessed 26 04 2018].

[4] A. W. Clemans Vasters, "Why does Kafka scale better than other messaging systems like RabbitMQ?,"
Quora, [Online]. Available: https://www.quora.com/Why-does-Kafka-scale-better-than-other-messaging-
systems-like-RabbitMQ. [Accessed 25 04 2018].

[5] N. Narkhede, "Exactly-once Semantics are Possible: Here’s How Kafka Does it," Confluent Inc, 30 06 2017.
[Online]. Available: https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-
apache-kafka-does-it/. [Accessed 05 04 2018].

[6] T. A. S. Foundation, "Apache Kafka – Documentation," The Apache Software Foundation, [Online].
Available: https://kafka.apache.org/documentation/. [Accessed 26 04 2018].

[7] Apache, "Apache Kafka - Introduction," The Apache Software Foundation, [Online]. Available:
https://kafka.apache.org/intro. [Accessed 05 04 2018].

[8] J. Kreps, "It’s Okay To Store Data In Apache Kafka," Confluent Inc, [Online]. Available:
https://www.confluent.io/blog/okay-store-data-apache-kafka/. [Accessed 05 04 2018].

[9] Confluent, "Kafka Connect - Confluent Platform," Confluent Inc, [Online]. Available:
https://docs.confluent.io/3.0.0/connect/intro.html. [Accessed 05 04 2018].

[10] Confluent, "Connectors and Apache Kafka Connect APIs," Confluent Inc, [Online]. Available:
https://www.confluent.io/connectors/. [Accessed 13 11 2018].

[11] Hetzner, "Truly thrifty cloud hosting," Hetzner Online GmbH, [Online]. Available:
https://www.hetzner.com/cloud. [Accessed 16 11 2018].

[12] noVNC, "noVNC Open Source VNC Client," noVNC, [Online]. Available: https://novnc.com/info.html.
[Accessed 16 11 2018].

[13] Yahoo, "Kafka Manager," Yahoo, [Online]. Available: https://github.com/yahoo/kafka-manager. [Accessed
10 10 2018].

[14] Landoop, "Kafka Connect UI," Landoop, [Online]. Available: https://github.com/Landoop/kafka-connect-ui.
[Accessed 10 10 2018].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 89

[15] Confluent, "Confluent Hub," Confluent Inc, [Online]. Available: https://www.confluent.io/hub/. [Accessed
05 04 2018].

[16] I. Pivotal Software, "Understanding When to use RabbitMQ or Apache Kafka," [Online]. Available:
https://content.pivotal.io/rabbitmq/understanding-when-to-use-rabbitmq-or-apache-kafka. [Accessed 06
11 2018].

[17] Oracle, "Using JConsole," Oracle Corporation, [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html. [Accessed 26 04
2018].

[18] A. Duprat, "Choosing a Message Queue," Medium, [Online]. Available: https://medium.com/linagora-
engineering/how-to-choose-a-message-queue-247dde46e66c. [Accessed 01 04 2018].

[19] Y. Trudeau, "Exploring Message Brokers: RabbitMQ, Kafka, ActiveMQ, and Kestrel," DZone, [Online].
Available: https://dzone.com/articles/exploring-message-brokers. [Accessed 05 04 2018].

[20] Pivotal, "RabbitMQ," Pivotal Software, [Online]. Available: https://www.rabbitmq.com/. [Accessed 05 04
2018].

[21] Apache, "Apache Kafka," The Apache Software Foundation, [Online]. Available: https://kafka.apache.org/.
[Accessed 05 04 2018].

[22] Apache, "Apache ActiveMQ," The Apache Software Foundation, [Online]. Available:
http://activemq.apache.org/. [Accessed 02 04 2018].

[23] Pivotal, "What can RabbitMQ do for you?," Pivotal Software, [Online]. Available:
https://www.rabbitmq.com/features.html. [Accessed 10 04 2018].

[24] Apache, "Apache Camel How does Camel work with ActiveMQ," The Apache Software Foundation, [Online].
Available: http://camel.apache.org/how-does-camel-work-with-activemq.html. [Accessed 25 04 2018].

[25] Atomikos, "Review: Understanding Message Brokers - Kafka versus ActiveMQ," Atomikos BVBA, [Online].
Available: https://www.atomikos.com/Blog/ReviewUnderstandingMessageBrokersKafkaVersusActiveMQ.
[Accessed 25 04 2018].

[26] DataFlair, "Kafka VS RabbitMQ | Difference between RabbitMQ & Kafka," DataFlair, [Online]. Available:
https://data-flair.training/blogs/kafka-vs-rabbitmq/. [Accessed 29 05 2018].

[27] M. Shukla, "Apache Kafka Use cases And Applications," LinkedIn, [Online]. Available:
https://www.linkedin.com/pulse/apache-kafka-use-cases-applications-malini-shukla. [Accessed 20 06
2018].

[28] J. Kreps, "Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)," LinkedIn
Engineering, [Online]. Available: https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-
million-writes-second-three-cheap-machines. [Accessed 05 04 2018].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 90

[29] K. S. E. Philippe Dobbelaere, "Kafka versus RabbitMQ: A comparative study of two industry reference
publish/subscribe implementations: Industry Paper," Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems, June 19-23, 2017, Barcelona, Spain .

[30] J. Rao, "The value of Apache Kafka in Big Data ecosystem," Confluent inc, [Online]. Available:
https://www.confluent.io/blog/the-value-of-apache-kafka-in-big-data-ecosystem/. [Accessed 05 04 2018].

[31] D. Gutierrez, "A Brief History of Kafka, LinkedIn’s Messaging Platform," Inside BIGDATA, [Online]. Available:
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/. [Accessed
28 04 2018].

[32] Confluent, "Authorization and ACLs," Confluent Inc., [Online]. Available:
https://docs.confluent.io/3.2.0/kafka/authorization.html. [Accessed 05 04 2018].

[33] Apache, "Kafka protocol guide," The Apache Software Foundation, [Online]. Available:
https://kafka.apache.org/protocol.html. [Accessed 05 04 2018].

[34] J. Rao, "Clients - Apache Kafka," The Apache Software Foundation, [Online]. Available:
https://cwiki.apache.org/confluence/display/KAFKA/Clients. [Accessed 08 04 2018].

[35] Confluent, "Kafka Connect Architecture," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/connect/design.html. [Accessed 13 11 2018].

[36] Apache, "Apache Avro 1.8.2 Documentation," The Apache Software Foundation, [Online]. Available:
https://avro.apache.org/docs/current/. [Accessed 13 11 2018].

[37] Confluent, "Schema Registry - Confluent Platform," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/schema-registry/docs/index.html. [Accessed 13 11 2018].

[38] Google, "Cloud Dataflow - Stream & Batch Data Processing," Google , [Online]. Available:
https://cloud.google.com/dataflow/. [Accessed 14 11 2018].

[39] Amazon, "AWS Lambda - Serverless Compute," Amazon Web Services Inc, [Online]. Available:
https://aws.amazon.com/lambda/. [Accessed 14 11 2018].

[40] Apache, "Apache Storm," Apache Software Foundation, [Online]. Available: http://storm.apache.org/.
[Accessed 14 11 2018].

[41] Apache, "Apache Flink: Stateful Computations over Data Streams," Apache Software Foundation, [Online].
Available: https://flink.apache.org/. [Accessed 14 11 2018].

[42] Apache, "Spark Streaming | Apache Spark," Apache Software Foundation, [Online]. Available:
https://spark.apache.org/streaming/. [Accessed 14 11 2018].

[43] Apache, "Storm Kafka Integration," Apache Software Foundation, [Online]. Available:
http://storm.apache.org/releases/2.0.0-SNAPSHOT/storm-kafka.html. [Accessed 14 11 2018].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 91

[44] R. Metzger, "Kafka + Flink: A Practical, How-To Guide," dataArtisans, 2 9 2015. [Online]. Available:
https://data-artisans.com/blog/kafka-flink-a-practical-how-to. [Accessed 14 11 2018].

[45] Apache, "Samza," Apache Software Foundation, [Online]. Available: http://samza.apache.org/. [Accessed
14 11 2018].

[46] C. Riccomini, "How LinkedIn Uses Apache Samza," InfoQueue, 09 02 2014. [Online]. Available:
https://www.infoq.com/articles/linkedin-samza. [Accessed 14 11 2018].

[47] Apache, "Spark Streaming + Kafka Integration Guide," Apache Software Foundation, [Online]. Available:
https://spark.apache.org/docs/2.2.0/streaming-kafka-integration.html. [Accessed 14 11 2018].

[48] Apache, "Apache Kafka - Kafka Streams," Apache Software Foundation, [Online]. Available:
https://kafka.apache.org/documentation/streams/. [Accessed 14 11 2018].

[49] Confluent, "Streams DSL," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/streams/developer-guide/dsl-api.html. [Accessed 14 11 2018].

[50] J. Kreps, "Introducing Kafka Streams: Stream Processing Made Simple," Confluent Inc, 10 03 2016. [Online].
Available: https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/.
[Accessed 14 11 2018].

[51] M. J. S. Florian Troßbach, "Crossing the Streams – Joins in Apache Kafka," Confluent Inc, 19 12 2017.
[Online]. Available: https://www.confluent.io/blog/crossing-streams-joins-apache-kafka/. [Accessed 15 11
2018].

[52] Confluent, "KSQL," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/ksql/docs/index.html. [Accessed 15 11 2018].

[53] Track&Know, "D1.1 Track and Know Observatory," June 2018.

[54] Google, "Google Cloud Platform Free Tier," Google, [Online]. Available: https://cloud.google.com/free/.
[Accessed 16 11 2018].

[55] D. Stancevic, "Zero Copy I: User-Mode Perspective," linuxjournal, [Online]. Available:
https://www.linuxjournal.com/article/6345?page=0,0. [Accessed 12 11 2018].

[56] Elkosmon, "ZooNavigator," [Online]. Available: https://github.com/elkozmon/zoonavigator. [Accessed 10
10 2018].

[57] LinkedIn, "Kafka Monitor," LinkedIn, [Online]. Available: https://github.com/linkedin/kafka-monitor.
[Accessed 10 10 2018].

[58] Landoop, "Schema Registry UI," Landoop, [Online]. Available: https://github.com/Landoop/schema-
registry-ui. [Accessed 10 10 2018].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 92

8 Annex

Big Data for Mobility Tracking Knowledge Extraction in Urban
Areas

D2.3 Development of Toolboxes Integration
Connectors - ANNEX

Document Summary Information

Grant Agreement No 780754 Acronym TRACK & KNOW

Full Title Big Data for Mobility Tracking Knowledge Extraction in Urban Areas

Start Date 01/01/2018 Duration 36 months

Project URL https://trackandknow.eu

Deliverable D2.3 Development of Toolboxes Integration Connectors ANNEX

Work Package WP2 Management Report Annex (BDMI Toolbox)

Contractual due date 02/08/19 Actual submission date 02/08/19

Nature Other Dissemination Level PU

Lead Beneficiary 05 - INTRASOFT

Responsible Author Ioannis Daskalopoulos (INTRA), Marios Logothetis (INTRA)

Contributions from Toni Staykova (CEL), Leonardo Longhi (SIS), Fabio Manichetti (CNR), Mirco Nanni
(CNR), Gennady Andrienko (Fraunhofer), Ian Smith (PAP), Akrivi Vlachou (UPRC),
Christos Doulkeridis (UPRC), Yannis Theodoridis (UPRC), Athanasios Koumparos (VFI),
Anagnostis Delkos (VFI), Panos Livanos (VFI)

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 93

Revision history (including peer reviewing & quality control)

Version Issue Date %
Complete

Changes Contributor(s)

V0.1 15/07/19 5% Initial Deliverable Structure Ioannis Daskalopoulos
(INTRA)

V0.2 23/07/19 95% Internal Review version Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

V0.3 29/07/19 99% Peer Review Contributions Ibad Kureshi (INLECOM),
Yannis Theodoridis (UPRC)

V0.4 31/08/19 100% QA process Marios Logothetis (INTRA)

V1.0 01/08/19 100% Final version Ioannis Daskalopoulos
(INTRA), Marios Logothetis
(INTRA)

Disclaimer

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily
represent the views expressed by the European Commission or its services.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the TRACK&KNOW consortium make no warranty of any kind with regard to this material including,
but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the TRACK&KNOW Consortium nor any of its members, their officers, employees or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the TRACK&KNOW Consortium nor any of its
members, their officers, employees or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© TRACK&KNOW Consortium, 2018-2020. This deliverable contains original unpublished work except where
clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 94

Executive Summary
This document presents additional information to deliverable “D2.3 Development of Toolboxes Integration
Connectors” aiming to further clarify specific components of the Track&Know platform, according to
recommendations and feedback received at the midterm project review. In particular, the focus resides on
highlighting the internal workings of platform blocks and connectors providing additional documentation on their
components.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 95

Table of Contents

Document Summary Information ... 92
Revision history (including peer reviewing & quality control)... 93
Disclaimer ... 93
Copyright message .. 93
Executive Summary ... 94
List of Figures... 96
Glossary of terms and abbreviations used .. 97
1 Introduction ... 100

1.1 Overview and Annex Structure ... 100
2 Track & Know Architecture and System Design .. 101

2.1 High-level Architecture ... 101
2.2 System Architecture ... 102

3 Track & Know Datasets and Connectors ... 106
3.1 VFI Data Connectors ... 107

3.1.1 Kafka Producer type Connector for the VFI historical data .. 107
3.1.2 Kafka Connect type Connector for the VFI live data ... 109

3.2 SIS Data Connectors ... 110
3.2.1 Kafka Connect type Connector for the SIS METRICS data ... 110
3.2.2 Kafka Connect type Connector for the SIS VOUCHER data ... 111
3.2.3 Kafka Producer type Connector for the SIS METRICS data ... 113
3.2.4 Kafka Producer type Connector for the SIS VOUCHER data.. 114

3.3 PAP Data Connectors .. 115
3.3.1 Producer type Connector for the PAP reconstructed journey data .. 115
3.3.2 Kafka Connect type Connector for the VFI/PAP Smartphone app live data 116

4 Conclusions .. 118
5 References ... 119
6 APPENDIX A to ANNEX ... 121

6.1 Content Types .. 121
6.2 Errors ... 122
6.3 Topics ... 122
6.4 Partitions .. 128
6.5 Consumers ... 134
6.6 Brokers ... 149
6.7 Topics ... 149
6.8 Partitions .. 155
6.9 Consumers ... 164
6.10 Brokers ... 170

7 APPENDIX B to ANNEX ... 171
7.1 Compatibility .. 171
7.2 Content Types .. 171
7.3 Errors ... 172
7.4 Schemas ... 172
7.5 Subjects .. 173
7.6 Compatibility .. 180
7.7 Config ... 182

8 APPENDIX C to ANNEX ... 186
8.1 Content Types .. 186
8.2 Statuses & Errors .. 186

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 96

8.3 Connectors ... 187
8.4 Tasks .. 193
8.5 Connector Plugins .. 195

9 APPENDIX D to ANNEX ... 199
9.1 Kafka Producer type Connector for the VFI historical data Class Diagram .. 199
9.2 Kafka Connect type Connector for the VFI live data Class Diagram .. 200
9.3 Kafka Connect type Connector for the SIS METRICS data Class Diagram .. 201
9.4 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram .. 202
9.5 Kafka Producer type Connector for the SIS METRICS data Class Diagram .. 203
9.6 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram 204
9.7 Kafka Producer type Connector for the PAP reconstructed journey data Class Diagram 205
9.8 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class Diagram 206

List of Figures
Figure 2.1 Track&Know High level architecture .. 101

Figure 2.2 Track&Know Platform Cloud Computing Nodes ... 102

Figure 3.1 The Track&Know repository .. 107

Figure 3.2 Kafka Producer type Connector for the VFI historical data Class Diagram 108

Figure 3.3 Kafka Connect type Connector for the VFI live data Class Diagram ... 109

Figure 3.4 Kafka Connect type Connector for the SIS METRICS data Class Diagram ... 110

Figure 3.5 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram 112

Figure 3.6 Kafka Producer type Connector for the SIS METRICS data Class Diagram 113

Figure 3.7 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram 114

Figure 3.8 Producer type Connector for the PAP reconstructed journey data Class Diagram 115

Figure 3.9 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class Diagram 116

Figure 9.1 Kafka Producer type Connector for the VFI historical data Class Diagram 199

Figure 9.2 Kafka Connect type Connector for the VFI live data Class Diagram ... 200

Figure 9.3 Kafka Connect type Connector for the SIS METRICS data Class Diagram ... 201

Figure 9.4 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram 202

Figure 9.5 Kafka Producer type Connector for the SIS METRICS data Class Diagram 203

Figure 9.6 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram 204

Figure 9.7 Kafka Producer type Connector for the PAP reconstructed journey data Class Diagram 205

Figure 9.8 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class Diagram 206

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 97

Glossary of terms and abbreviations used

Abbreviation / Term Description

API Application Programmable Interface

AMQP Advanced Message Queueing Protocol

BD Big Data

BDA Big Data Analytics

BDP Big Data Processing

BMDI Big Mobility Data Integrator

BMI Body Mass Index

CCG Clinical Commissioning Groups

CER Complex Event Recognition

CLI Command Line Interface

CPAP Continuous Positive Airway Pressure

CPU Central Processing Unit

CSV Comma Separated Values

DoA Description of Action

DB Database

DNA Did Not Attend

DST Day-light Saving Time

DVLA Driver and Vehicle Licensing Authority

ESS Epworth Sleepiness Scale

EtC Ethics Committee

ETL Extract Transform Load

FTP File Transfer Protocol

GPS Global Positioning System

GUI Graphical User Interface

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 98

HBASE Hadoop Database

HDFS Hadoop Distributed File System

HGV Heavy Goods Vehicle

HTTPS Hypertext Transfer Protocol Secure

IO Input/output

IT Information Technology

JDBC Java Database Connectivity

JMS Java Message Service

JMX Java Management Extensions

JSON Java Script Object Notation

JVM Java Virtual Machine

KPI Key Performance Indicators

MQTT Message Queue Telemetry Transport

NFS Network File System

NIST National Institute of Standards and Technologies

ODI Oxygen Desaturation Index

OSA Obstructive Sleep Apnoea

PMB Project Management Board

PR Pulse Rate

RPM Rotations Per Minute

SASL Simple Authentication and Security Layer

SFTP SSH File Transfer Protocol

SLA Service Level Agreement

SQL Structured Query Language

SSH Secure Shell

SSHFS SSH Filesystem

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 99

SSL Secure Sockets Layer

STOMP Simple (or Streaming) Text Orientated Messaging Protocol

TLS Transport Layer Security

URL Universal Resource Locator

UTC Coordinated Universal Time

UV Ultraviolet

VA Visual Analytics

VM Virtual Machine

WP Work Package

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 100

1 Introduction
1.1 Overview and Annex Structure
This Annex presents further insight to specific Track&Know Platform components and to custom Integration
Connectors implemented and described in detail in D2.3 [1]. The Annex is produced according to
recommendations and feedback received at the midterm project review in M18 of the project.

This Annex is structured in the following way:

 Chapter 1: Overview and Annex Structure (this section), outlining the annex and how it relates to the project
as a whole.

 Chapter 2: Track&Know Architecture and System Design, where the former is presented for reference
purposes and the System Design components are further described. Please note that this distributed
deployment is setup for Track&Know specifically. Open source components are used that are configured
for the purposes of the project.

 Chapter 3: Track&Know connectors, providing additional information about the VFI, SIS and PAP data
connectors complemented by informative figures related to their operation and internal workings. Please
note that these are all new components developed for Track&Know.

 Chapter 4: Conclusions
 APPENDIX A: A listing of the REST Proxy API reference.
 APPENDIX B: A listing of the Schema Registry API reference.
 APPENDIX C: A listing of the Kafka Connect API reference.
 APPENDIX D: Detailed Class Diagrams of the developed Connectors.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 101

2 Track & Know Architecture and System Design
The following section aims to present the high-level architecture of the Track&Know platform by highlighting the
Data Sources and Data Store, the Connectors and Communication Platform, the underlying Infrastructure,
Toolboxes and Pilots. Furthermore, System architecture components are further described, and their
functionality is presented.

2.1 High-level Architecture
In this section the Track&Know High level architecture is presented for reference and completeness purposes of
this annex, together with a short description of the individual functional components, their interactions and the
related workplan’s Tasks. This architecture fulfils Big data requirements, described in D1.2, by also considering
the data diversity, volume and availability in terms of extremely large and complex collections, and the detailed
use-case scenarios described in WP6 and specifically in D6.1.

The architecture consists of:

● Data sources which represent the structured and unstructured data streams to be made available and
be connected to the platform.

● Data store which represent the batch and interactive data sources that will be made available and will
be connected to the platform.

● Connectors together with the Communication platform, that connect external Data sources and the Data
store and make them available to the platform, Toolboxes and Pilots.

● Underlying Infrastructure providing all the necessary Big data tools.

Figure 2.1 Track&Know High level architecture

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 102

2.2 System Architecture
The Track&Know Platform is deployed in Hetzner Cloud [2] which provides the necessary flexibility of
commissioning and decommissioning virtual machines according to current and future needs in the project. At
the time of writing a total of 22 cloud computing instances of varying characteristics are operational, running
Centos 7 Linux minimal installations with encrypted disk drives to ensure data encryption at rest. The login
configurations for these machines do not permit root login and password authentication, allowing only non-root,
key-based authentication via SSH.

Specific firewall rules fully restrict SSH traffic to selected IP addresses. Other traffic is in general only allowed
between the cluster members, with the remaining IP addresses blocked by default, isolating the Platform from
the outer world. Although the traffic between these hosts is routed internally by Hetzner, which allows for better
network performance, the traffic still remains visible to a skilled attacker and therefore should be encrypted. At
the time of writing, Hetzner Cloud is not offering a private subnet where the machines can be isolated from the
rest of the Internet. In general, all data communications within the cluster are encrypted using SSL (TLS) by
employing the encryption mechanisms offered by Apache Kafka. Furthermore, in cases where the data are served
to other cluster nodes by an NFS server, then the alternative secure SSHFS is used. Finally, it should be mentioned
that any remote desktop connections are performed via HTTPS and file uploads are using SFTP. The diagram
below (Figure 4.1) provides an insight to the purpose of each node in the Track&Know Cluster.

Figure 2.2 Track&Know Platform Cloud Computing Nodes

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 103

Please note that this distributed deployment is setup for Track&Know specifically. Open source components
are used that are configured for the purposes of the project.

The functionality of each of the above components of the Track&Know platform can be described as follows:

 Zookeeper Nodes (1, 2, 3) : The Zookeeper [3] nodes are open source servers which enable highly reliable
distributed coordination. The Quorum is used by Kafka Brokers, Kafka Connect, Schema Registry and Rest
Proxy nodes and provides a centralised service in which configuration information is maintained and also
provides the necessary distributed synchronisation between the components. The Zookeeper nodes are
open source components deployed and configured for the Track&Know Platform.

 Kafka Brokers (4, 5, 6) : Kafka Brokers [4] receive, persist and make available all the data in the
Track&Know Platform. They represent Servers which are capable of receiving, maintaining and making
available data in the form of timestamped and with offset messages, that are hosted in topics. Topics
are partitioned and spread across all available brokers for load balancing. Clients can subscribe to
multiple topics and simultaneously read from them at different partitions and offsets. Similarly, multiple
clients can write to one or more topics simultaneously. Partitions can be replicated on more than one
brokers for high availability. Apache Kafka Brokers are open source components deployed and
configured for the Track&Know Platform.

 Rest Proxy (7) : The REST Proxy [5] provides an interface to the Apache Kafka Cluster which among others
allows to view its state, interact with the cluster, produce and consume messages, create and delete
topics and perform administrative tasks. It is provided for convenience purposes and also enables other
administrative tools to work by utilising it. The REST API reference can be found in [5] and is also included
in APPENDIX A of this document for convenience. The REST Proxy is an open source component deployed
and configured for the Track&Know Platform.

 Schema Registry (8) : The Schema Registry [6] provides a means of storing message schemas and a
RESTful interface to access and manipulate the former. Message schemas are available for all the clients
of the platform making their transmission unnecessary, while at the same time versioning and schema
evolution are possible. The Schema Registry is used by Kafka Connect [7] and can also be utilised by
custom clients. The REST API reference can be found in [8] and is also included in APPENDIX B of this
document for convenience. The Schema Registry is an open source component deployed and configured
for the Track&Know Platform.

 NFS Node (9) : This node is for the purpose of maintaining large portions of data (e.g. csv files) and
making it available over network to the rest of the VMs in the cluster. This is achieved by mounting the
volume of this machine over SSHFS. This way other VMs that mount the volume can have simultaneous
read access to the data. In a data loading task, connector code running in parallel on several other VMs
accesses parts of the data loaded in this node.

 Kafka Connect Workers (10, 11, 12) : The Track&Know Platform features 3 Kafka Connect [7] nodes
(which can be increased easily and as needs dictate) where Workers are setup in “Distributed mode”.
This setup is both horizontally scalable and fault tolerant out of the box. In distributed mode the nodes
coordinate and schedule execution of connectors and tasks across all available workers. The Kafka
Connect API reference can be found in [9] and is also included in APPENDIX C of this document for
convenience. Apache Kafka Connect Workers are open source components deployed and configured for
the Track&Know Platform. The resources of these VMs are also utilised in the cases where a Producer
type of connector needs to be run on multiple VMs.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 104

 UI & Monitoring Node (13) : The central monitoring approach adopted for the Track&Know platform
utilises Prometheus [10] JMX exporters which are running on individual cluster nodes and expose a wide
range of metrics depending on the node type. All these metrics are gathered at the UI & Monitoring
Node where the Prometheus time series collection and processing server resides. All gathered data are
available to compose informative dashboards which provide metrics, graphs and panels about the overall
Platform status, performance and health. The visualisation of the gathered metrics is achieved by a
custom Track&Know Cluster Overview Dashboard. Grafana [11] is used on the UI & Monitoring Node for
the creation of custom panels for the Track&Know platform operation, demo and administration
purposes and also for WP3, WP4 and WP5 users to be used as templates when developing WP specific
dashboards. The current configuration allows the user to get a thorough overview of the Platform status
with a single glance at the available metrics and graphs with the added ability to investigate historical
performance data. Currently Zookeeper, Apache Kafka, Schema Registry, Rest Proxy and Kafka Connect
are monitored. Furthermore, a selection of open source tools for overview and administration tasks
concerning the platform including Kafka Manager [12], Kafka Monitor [13], Zoo Navigator [14], Kafka
Connect UI [15], Schema Registry UI [16] are also available. The tools mentioned are open source
components that are setup and configured to work with the Track&Know Platform. The Grafana Panels
are new components implemented specifically for Track&Know.

 General Nodes (14, 15) : The General Nodes appearing in Figure 4.1 represent computing nodes that are
hosting a range of components of the Track&Know Project from simple Kafka Producers and Consumers,
to Kafka Streams applications, Toolboxes’ code and necessary technologies to support it etc. These nodes
are provided so that the solutions developed by other Toolbox WPs can be accommodated. It should be
noted that these nodes are commissioned when a specific need arises, in order for Toolbox and
supporting libraries to be configured.

The above components have been selected, installed, configured and fine-tuned to serve the needs of the Project
and it should be noted that the platform they resemble was created specifically for Track&Know. Although
there may exist software tools that can deploy Apache Kafka (mainly on a single host which is not an option for
any of the aims of the Project), the distributed deployment presented above, its configuration which makes it
work in a distributed, horizontally scalable, secure, fault tolerant fashion and the installation of the various open
source tools that complete the platform are not available. The listing below briefly summarises the effort
required for the realisation of the above:

 Cloud VM instances creation in Hetzner Cloud [2] according to needs and with various CPU and RAM
characteristics. Total of 22 VMs. Commissioning and decommissioning of nodes depending on usage to
preserve budget.

 Centos 7 Linux installation on machines mainly minimal installs with desktop functionality whenever
necessary. Configured with encrypted volumes. Setup of log rotation, maintenance and updates.

 Generation of necessary user accounts and key-only, non-root SSH remote login configuration.
 Fixed IP address assignment, firewall rules (iptables) configuration and maintenance according to needs,

allowing traffic only between Track&Know nodes and selected machines outside the platform.
 Installation and configuration of 3 Apache Kafka Brokers [17] to work as a cluster. Generation of

necessary Certificate Authority (CA), truststores and keys for TLS encryption, authentication and
authorisation.

 Installation and configuration of 3 Apache Kafka Connect Worker [7] nodes with encrypted
communications between them and Kafka Brokers. Generation of necessary keys for the encryption
authentication and authorisation.

 Setup of a 3-node Zookeeper Quorum [18] on dedicated machines.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 105

 Configuration of an NFS-SSHFS node to function as a remote volume for other machines that can be
mount over the network using SSHFS. This effectively makes visible e.g. csv data loaded on that machine
available to other nodes over the network. Setup of mount instructions on several other nodes to mount
the remote volume.

 Installation and configuration of the Schema Registry [6] node to work with the Kafka Brokers and Kafka
Connect Workers mentioned above. Generation of necessary keys for the encryption authentication and
authorisation within the cluster.

 Generation of necessary keys for the encryption authentication and authorisation of WP3, WP4 and WP5
clients against the cluster.

 Installation and configuration of the Rest Proxy [5] node to work with the Kafka Brokers and Kafka
Connect Workers. Generation of necessary keys for the encryption authentication and authorisation
within the cluster. Configuration to allow only https calls.

 Setup and configuration of TigerVNC [19] and noVNC [20] for remote desktop access. Setup to work
explicitly over HTTPS.

 Setup and configuration of Prometheus [10] JMX exporters on all nodes for the purpose of emitting
metrics of the installed components.

 Setup of Prometheus monitoring system and time series database for maintaining the emitted metrics
on the UI & Monitoring Node of the cluster.

 Setup and configuration of Grafana [11] on the UI & Monitoring Node of the cluster. Creation of custom
panels for the Track&Know platform demo and administration purposes. Creation of custom panels for
WP3, WP4 and WP5 users to be used as templates when developing platform specific dashboards.

 Installation and configuration of a selection of open source tools for overview and administration tasks
of the platform. Configuration to function over secure connections and with the distributed deployment
of Track&Know. Tools include Kafka Manager [12], Kafka Monitor [13], ZooNavigator [14], Kafka Connect
UI [15], Schema Registry UI [16].

 Creation and setup of several VMs according to the needs of WP3, WP4, WP5 with necessary user
accounts and remote desktop functionality.

 Preparation of workshop session and related information, documentation and manuals for other WP
users.

 Setup of necessary private git repositories for maintaining the developed software under version control.
 Implementation of the connectors for all the datasets made available by partners, for further information

please consult Chapter 3 of this document.

The above list is not meant to be exhaustive but to only provide a brief summary of tasks undertaken for the
realisation of the Track&Know Platform.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 106

3 Track & Know Datasets and Connectors

The available datasets within Track&Know originate mainly from partners VFI, SIS and PAP, detailed information
for which can be found in deliverable D6.1 [21]. Partner VFI has provided historical fleet mobility data in CSV files
organised in anonymised customer folders and has also provided a live data feed of mobility data for the vehicles
that it monitors, via a REST API with the data in JSON format.

Partner SIS has provided access to a MongoDB instance, which was setup on their premises for accessing the
data made available to the Consortium. The MongoDB contains a total of 5 collections split in 2 databases.
Collection DATASET1 contains the main mobility data with relative GPS coordinates while collections CRASH and
EVENTS contain accident and other type of important events respectively. The POSITIONS and VOUCHER
collections of the database contain places of interest and insurance vouchers information. All the SIS data are
stored as MongoDB documents and are retrieved in JSON format.

Regarding the data that partner PAP has made available, they consist of data related to the patients’ journeys
from residence to clinic, obtained by reconstructing GPS traces, directions, route timings and a poly-line as a
GeoJSON for each individual appointment from existing appointment data. A plan also exists for introducing a
purpose-built smartphone mobility data logger app developed by VFI, which provides patient journey
information. It is planned for this data to be made available via a REST API in JSON format, in a similar way to the
live feed of fleet mobility data described above. In cases where mobile networking costs should be avoided in a
planned experiment, the app can delay transmission of accumulated data until WIFI is available. When operating
in this mode the gathered data will be provided by using the same approach as for the VFI historical fleet mobility
data. For the patient journeys data, a Producer type connector has been developed whereas for the logger app
a Kafka Connect type of connector has been developed.

The data provided by the partners are loaded to the Track&Know platform by using a set of custom connectors
implemented by using the Producer and Kafka Connect Classes and Libraries which is the way of developing
connectors for Apache Kafka. Please note that while the connectors make use of the available libraries, they
represent new components developed for Track&Know. Two types of connectors have been implemented
depending on the case. Producer type of connectors are run as standalone java applications whereas Kafka
Connect type of connectors are implemented and packaged as Kafka Connect modules (plugins) that are to be
instantiated and run in a distributed Kafka Connect Cluster. The language used for the implementation is Java
(compatible with JDK 1.8 u31 or later) and the source code is under version control residing in private Git
projects/repositories hosted in GitLab.com:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 107

Figure 3.1 The Track&Know repository

The Connectors assume Apache Kafka V2.0 with Kafka Connect in a distributed deployment. In the
Track&Know platform a 3-node Apache Kafka Brokers deployment is in place with an additional 3-node Kafka
Connect Worker distributed setup. The deployment and usage of connectors is performed on virtual hosts
running CentOS Linux (v7.6). It should be noted that all communications between the Connectors and the
Track&Know Platform are encrypted (TLS v1.2) and compression is enabled using the Snappy algorithm.

3.1 VFI Data Connectors
In this section the connectors implemented for introducing the VFI data to the Track&Know platform are
discussed.

3.1.1 Kafka Producer type Connector for the VFI historical data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 108

Figure 3.2 Kafka Producer type Connector for the VFI historical data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

When started, the VfiBatchProducerSSL creates a Properties object by reading in the connector configuration
file. Then according to the properties, it creates one or multiple VfiProducerThreadSimple instances which are
also started. The Properties object is passed to the threads. Each VfiProducerThreadSimple instantiates exactly
one KafkaProducer by using the Properties and proceeds to use the Files class in order to access the folders and
csv files it is assigned to load from the indicated path in the Properties. For each file the CsvFileUtils may be used
if necessary, to remove invalid characters and UTF-8 BOM if it exists. An entire csv file is loaded each time and
each one of its lines are used to create from 0 to many Producer Record(s), which are sent asynchronously to the
Apache Kafka Brokers by using the KafkaProducer. The KafkaProducer is configured according to the Properties
to send ProducerRecord(s) to a specific topic and by using a partitioning scheme which selects the partition inside
the topic (in which the records will be written) based on clientID. Also, the KafkaProducer is configured to use
the Snappy compression algorithm and a specific key for authentication authorisation and encryption. If
configured, the CoordinatesFilter class can be used which rejects lines in the csv files containing GPS coordinates
outside Europe. Each VfiProducerThreadSimple which finishes processing its assigned folders exits and the
processing ends once all threads have finished. If the properties indicate that multiple instances of the
VfiBatchProducerSSL will be run in different hosts then the total task is split among them with each instance
assigned a portion according to its ID (configured in the properties). The Logger is instantiated by each
component that needs to provide log output.

As mentioned above, the multiple threads that can be configured on each Producer instance allow the maximum
CPU utilisation of each Producer node, maximising the throughput. The Producer threads are equally assigned
between them several customer folders from the subset that is assigned to this Producer instance.

Once the Producer instances are started, the individual threads begin to read customer folders in parallel. The
files inside each customer folder are sorted in a chronological order according to their filename and are one by
one loaded and parsed. Each line results in a message that is sent to the Kafka Topic of choice. If the destination
Kafka Topic has more than one partition configured, then the messages are introduced to the applicable partition
based on the customer number.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 109

3.1.2 Kafka Connect type Connector for the VFI live data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.3 Kafka Connect type Connector for the VFI live data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

For the purpose of introducing the VFI live data to the Track&Know Platform the Kafka Connect functionality was
used. More specifically a custom Kafka Connect Source Connector was developed which is deployed in a highly
available Connect Cluster. Once the connector is instantiated the Connect Cluster Workers perform the work of
retrieving the VFI live data and load them into the topic of choice according to the code of the connector and its
configuration. In the case of failure of a specific worker node, the other remaining nodes of the cluster will
continue to run the connector code. This means that even at the case of failure of a node, the VFI live data will
continue to enter the Platform.

The VfiRtSourceConnector shown above is packaged as a Kafka Connect module and can be configured and
instantiated in the Kafka Connect Cluster. This connector reads the configuration from the
VfiSourceConnectorConfig which is entered prior to starting the connector and is used to initialise this object.
Configuration values that need to be checked in the VfiSourceConnectorConfig are checked using the
FetchItemsValidator and IntervalSecsValidator which impose restrictions to the max items to be fetched in each
call to the VFI System and the frequency that the data will be fetched at. These validators allow a maximum of
1000 vehicles data every 60 seconds to be fetched according to the (as of now) guidelines from VFI. If the
configuration is not valid the connector will not start. Provided that the VfiRtSourceConnector manages to
validate the configuration, it proceeds to create the necessary VfiRtSourceTask(s). In this implementation the
VfiRtSourceConnector starts exactly one VfiRtSourceTask. While the connector runs, the VfiRtSourceTask is
assigned to a worker in the Kafka Connect Cluster according to workers load, automatically by Kafka Connect.
The VfiRtSourceTask, by using values from the VfiSourceConnectorConfig proceeds to use a
SimpleRESTServiceClient which initiates an HttpURLConnection to the VFI Server and by making a POST Request
it receives a response containing the live vehicle data in JSON format. The response is used to create and initialise
a JSONObject containing all the received information organised in a JSONArray. Each of the 1000 internal
JSONObject items that the array contains are passed to the constructor of the SensorDataRt which creates
SourceRecord objects according to the VFISchemas for the sensor data. The VFISchemas class provides the

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 110

schema for each Key for the Apache Kafka SourceRecord and the schema for the actual value of the
SourceRecord. Depending on the data items retrieved the VfiRtSourceTask creates from 0 to many (max 1000 in
this case) SourceRecords that the Kafka Connect Worker running the task will write to the topic selected in the
VfiSourceConnectorConfig. The procedure described above occurs repeatedly once the connector is started and
at the interval selected (at minimum every 60 seconds). The Logger is instantiated by each component that needs
to provide log output.

3.2 SIS Data Connectors
In this section the connectors implemented for introducing the SIS data to the Track&Know platform are
discussed. Initially more connectors were implemented (please see Track&Know deliverable D2.3 [1]) as the
MongoDB provided by partner SIS included information split between the DATASET1, CRASH, EVENTS and
POSITIONS collections which was decided to be merged into METRICS for ease of use within the consortium.
Therefore, the METRICS and VOUCHER connectors for the respective collections will be utilized and described
but it should be noted that the design and functionality of the other connectors is similar and therefore omitted.

3.2.1 Kafka Connect type Connector for the SIS METRICS data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.4 Kafka Connect type Connector for the SIS METRICS data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

For the purpose of introducing the SIS METRICS data to the Track&Know Platform the Kafka Connect functionality
was used. More specifically a custom Kafka Connect Source Connector was developed which is deployed in a
highly available Connect Cluster. Once the connector is instantiated the Connect Cluster Workers perform the
work of retrieving the SIS METRICS data and load it into the topic of choice according to the code of the connector
and its configuration. In the case of failure of a specific worker node, the other remaining nodes of the cluster
will continue to run the connector code. This means that even at the case of failure of a node, the SIS METRICS
data will continue to enter the Platform.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 111

The SisMetricsConnector shown above is packaged as a Kafka Connect module and can be configured and
instantiated in the Kafka Connect Cluster. This connector reads the configuration from the
SisMetricsConnectorConfig which is entered prior to starting the connector and is used to initialise this object.
The SisMetricsConnector according to its configuration, it proceeds to create the necessary
SisMetricsSourceTask(s) which can range from 1 to multiple. In this implementation the SisMetricsConnector can
start from one to many SisMetricsSourceTask instances. In the case that there are multiple instances, the
configuration passed to each one is adjusted accordingly to split the effort of loading the data between them. To
achieve this, the SisMetricsConnector creates and configures a MongoClient to connect to the MongoDatabase
and specifically to the MongoCollection of interest (here METRICS). By querying the collection, it retrieves the
minimum and maximum index which is stored in an IndexRange object. Then the initial IndexRange object is
passed to the RangeFinder class which produces the necessary number of index ranges, equal to the number of
SisMetricsSourceTask(s) that will be run. For example, if the initial range is from 1 to 100 and the RangeFinder is
asked to provide 2 IndexRanges then the output will be 2 ranges from 1 to 50 and 51 to 100 respectively. After
preparing the ranges of the collection for which each SisMetricsSourceTask will be assigned to work with, the
SisMetricsConnector can start the tasks. Each task in turn creates a MongoClient which connects to the database
producing a MongoDatabase object as before which is used to get a handle to the collection via a
MongoCollection object. Each SisMetricsSourceTask then proceeds to use its MongoCollection object to perform
a query to the Collection, requesting data from the range start to the range end values calculated earlier. A
MongoCursor object is returned once the query is executed which is used to traverse the returned MongoDB
Documents (records). While there exist more documents available, the SisMetricsSourceTask creates
SisMetricsData objects which result to SourceRecord objects according to the SisMetricsSchemas for the
returned data. The SisMetricsSchemas class provides the schema for each Key for an Apache Kafka SourceRecord
and the schema for the actual value of the SourceRecord. The SourceRecord(s) are continuously sent to the topic
of choice by the individual SisMetricsSourceTask(s) which have been started and are run in parallel. It should be
noted that each task works with a different index range in the database and therefore with a different portion
of the data. Furthermore, each task maintains the last offset of data that it has processed, and it commits that
information whenever a message is sent. This way the tasks can be resumed and continue from where they were
stopped, making it possible to recover and resume from failure. This is achieved by initialising the tasks at their
beginning with that information making it possible to proceed from that point onwards.

3.2.2 Kafka Connect type Connector for the SIS VOUCHER data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 112

Figure 3.5 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

For the purpose of introducing the SIS VOUCHER data to the Track&Know Platform the Kafka Connect
functionality was used. More specifically a custom Kafka Connect Source Connector was developed which is
deployed in a highly available Connect Cluster. Once the connector is instantiated the Connect Cluster Workers
perform the work of retrieving the SIS VOUCHER data and load it into the topic of choice according to the code
of the connector and its configuration. In the case of failure of a specific worker node, the other remaining nodes
of the cluster will continue to run the connector code. This means that even at the case of failure of a node, the
SIS VOUCHER data will continue to enter the Platform.

The SisVoucher3SourceConnector shown above is packaged as a Kafka Connect module and can be configured
and instantiated in the Kafka Connect Cluster. This connector reads the configuration from the
SisVoucher3SourceConnectorConfig which is entered prior to starting the connector and is used to initialise this
object. The SisVoucher3SourceConnector according to its configuration, it proceeds to create the necessary
SisVoucher3SourceTask(s) which can range from 1 to many depending on the needs. In this implementation the
SisVoucher3SourceConnector can start from one to many SisVoucher3SourceTask instances. In the case that
there are multiple instances, the configuration passed to each one is adjusted accordingly to split the effort of
loading the data between them. To achieve this, the SisVoucher3SourceConnector creates and configures a
MongoClient to connect to the MongoDatabase and specifically to the MongoCollection of interest (here
VOUCHER). By querying the collection, it retrieves the minimum and maximum index which is stored in and
IndexRange object. Then the initial IndexRange object is passed to the RangeFinder class which produces the
necessary number of index ranges, equal to the number of SisVoucher3SourceTask(s) that will be run. For
example, if the initial range is from 1 to 100 and the RangeFinder is asked to provide 2 IndexRanges then the
output will be 2 ranges from 1 to 50 and 51 to 100 respectively. After preparing the ranges of the collection for
which each SisVoucher3SourceTask will be assigned to work with, the SisVoucher3SourceConnector can start the
tasks. Each task in turn creates a MongoClient which connects to the database producing a MongoDatabase
object as before which is used to get a handle to the collection via a MongoCollection object. Each
SisVoucher3SourceTask then proceeds to use its MongoCollection object to perform a query to the Collection,
requesting data from the range start to the range end values calculated earlier. A MongoCursor object is returned
once the query is executed which is used to traverse the returned MongoDB Documents (records). While there

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 113

exist more documents available, the SisVoucher3SourceTask creates SisVoucher3Data objects which result to
SourceRecord objects according to the SisVoucher3Schemas for the returned data. The SisVoucher3Schemas
class provides the schema for each Key for an Apache Kafka SourceRecord and the schema for the actual value
of the SourceRecord. The SourceRecord(s) are continuously sent to the topic of choice by the individual
SisVoucher3SourceTask(s) which have been started and are run in parallel. It should be noted that each task
works with a different index range in the database and therefore with a different portion of the data.
Furthermore, each task maintains the last offset of data that it has processed, and it commits that information
whenever a message is sent. This way the tasks can be resumed and continue from where they were stopped,
making it possible to recover and resume from failure. This is achieved by initialising the tasks at their beginning
with that information making it possible to proceed from that point onwards.

3.2.3 Kafka Producer type Connector for the SIS METRICS data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.6 Kafka Producer type Connector for the SIS METRICS data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

In addition to the Kafka Connect type of connectors that were presented in the previous sections, a Producer
type of connector was also implemented for the SIS METRICS data. This connector was also made available to
provide a version that can be run on specific VMs of choice, in the case where a Kafka Connect cluster is not
available (e.g. on a VM within partners premises) or if there is a need to have absolute control on the loading
task. It should be noted that Kafka Connect type of tasks are assigned and run by the cluster where they may be
handed to workers in a non-deterministic fashion and can be restarted without notice when e.g. the cluster
rebalances, whereas in a Producer type of Connector the user has full control.

When started, the SisMetricsBatchProducerSSL creates a Properties object by reading in the connector
configuration file. Depending on the configuration, the SisMetricsBatchProducerSSL may start from one to many
SisMetricsProducerThread(s). Before starting the threads, SisMetricsBatchProducerSSL creates and configures a
MongoClient to connect to the MongoDatabase and specifically to the MongoCollection of interest (here
METRICS) to retrieve the minimum and maximum index which is stored in an IndexRange object. Then the initial
IndexRange object is passed to the RangeFinder class which produces the necessary number of index ranges,
equal to the number of SisMetricsProducerThread(s) that will be started. For example, if the initial range is from
1 to 100 and the RangeFinder is asked to provide 2 IndexRanges then the output will be 2 ranges from 1 to 50
and 51 to 100 respectively. After preparing the ranges of the collection for which each SisMetricsProducerThread
will be assigned to process, the SisMetricsBatchProducerSSL proceeds to start the SisMetricsProducerThread(s)

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 114

passing them a MongoCollection handle to subsequently perform their queries. A MongoCursor object is
returned once the query is executed and is used to traverse the returned MongoDB Documents (records). While
documents are available, they are used to create from 0 to many ProducerRecord(s), to be sent asynchronously
to the Apache Kafka Brokers by using the KafkaProducer. The KafkaProducer is configured according to the
Properties to send ProducerRecord(s) to a specific topic and by using a partitioning scheme which selects the
partition inside the topic (in which the records will be written) based on vehicleID, retrieved from each document
(record) using the schema information contained in SisMetricsSchemas. The KafkaProducer is configured to use
the Snappy compression algorithm and a specific key for authentication, authorisation and encryption. The
Logger is instantiated by each component that needs to provide log output. Each SisMetricsProducerThread
which reaches the end of its MongoCursor exits and the processing ends once all threads have finished. If the
properties indicate that multiple instances of the SisMetricsBatchProducerSSL will be run in different hosts then
the total task is split among them with each instance assigned a portion according to its ID (configured in the
properties).

3.2.4 Kafka Producer type Connector for the SIS VOUCHER data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.7 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

In addition to the Kafka Connect type of connectors that were presented in the previous sections, a Producer
type of connector was also implemented for the SIS VOUCHER data. This connector was also made available to
provide a version that can be run on specific VMs of choice, in the case where a Kafka Connect cluster is not
available (e.g. on a VM within partners premises) or if there is a need to have absolute control on the loading
task. It should be noted that Kafka Connect type of tasks are assigned and run by the cluster where they may be
handed to workers in a non-deterministic fashion and can be restarted without notice when e.g. the cluster
rebalances, whereas in a Producer type of Connector the user has full control.

When started, the SisDataset3VoucherBatchProducerSSL creates a Properties object by reading in the connector
configuration file. Depending on the configuration, the SisDataset3VoucherBatchProducerSSL may start from
one to many SisDataset3VoucherProducerThread(s) according to the configuration. Before starting the threads,
SisDataset3VoucherBatchProducerSSL creates and configures a MongoClient to connect to the MongoDatabase
and specifically to the MongoCollection of interest (here VOUCHER) to retrieve the minimum and maximum
index which is stored in an IndexRange object. Then the initial IndexRange object is passed to the RangeFinder

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 115

class which produces the necessary number of index ranges, equal to the number of
SisDataset3VoucherProducerThread (s) that will be started. For example, if the initial range is from 1 to 100 and
the RangeFinder is asked to provide 2 IndexRanges then the output will be 2 ranges from 1 to 50 and 51 to 100
respectively. After preparing the ranges of the collection for which each SisDataset3VoucherProducerThread will
be assigned to process, the SisDataset3VoucherBatchProducerSSL proceeds to start the
SisDataset3VoucherProducerThread(s), passing them a MongoCollection handle to subsequently perform their
queries. A MongoCursor object is returned once the query is executed and is used to traverse the returned
MongoDB Documents (records). While documents are available, they are used to create from 0 to many
ProducerRecord(s), to be sent asynchronously to the Apache Kafka Brokers by using the KafkaProducer. The
KafkaProducer is configured according to the Properties to send ProducerRecord(s) to a specific topic and by
using a partitioning scheme which selects the partition inside the topic (in which the records will be written)
based on vehicleID, retrieved from each document (record) using the schema information contained in
SisDataset3VoucherSchemas. The KafkaProducer is configured to use the Snappy compression algorithm and a
specific key for authentication, authorisation and encryption. The Logger is instantiated by each component that
needs to provide log output. Each SisDataset3VoucherProducerThread which reaches the end of its
MongoCursor exits and the processing ends once all threads have finished. If the properties indicate that multiple
instances of the SisDataset3VoucherBatchProducerSSL will be run in different hosts then the total task is split
among them with each instance assigned a portion according to its ID (configured in the properties).

3.3 PAP Data Connectors
In this section the connectors implemented for introducing the SIS data to the Track&Know platform are
discussed.

3.3.1 Producer type Connector for the PAP reconstructed journey data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.8 Producer type Connector for the PAP reconstructed journey data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 116

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

When started, the PapReconstructedBatchProducerSSL creates a Properties object by reading in the connector
configuration file. Then according to the properties, it creates one or multiple PapReconstructedProducerThread
instances which are also started. The Properties object is passed to the threads. Each
PapReconstructedProducerThread instantiates exactly one KafkaProducer by using the Properties and proceeds
to use the Files class in order to access the folders and individual files it is assigned to load from the indicated
path in the Properties. An entire file is loaded each time, producing a JsonNode object. Each one of the JSON
objects in the JsonNode are used to create from 0 to many ProducerRecord(s), to be sent asynchronously to the
Apache Kafka Brokers by using the KafkaProducer. The KafkaProducer is configured according to the Properties
to send ProducerRecord(s) to a specific topic and by using a partitioning scheme which selects the partition inside
the topic (in which the records will be written) based on each processed filename. Also, the KafkaProducer is
configured to use the Snappy compression algorithm and a specific key for authentication, authorisation and
encryption. Each PapReconstructedProducerThread which finishes processing its assigned folders exits and the
processing ends once all threads have finished. If the properties indicate that multiple instances of the
PapReconstructedBatchProducerSSL will be run in different hosts then the total task is split among them with
each instance assigned a portion according to its ID (configured in the properties). The Logger is instantiated by
each component that needs to provide log output.

As mentioned above, the multiple threads that can be configured on each Producer instance allow the maximum
CPU utilisation of each Producer node, maximising the throughput. The Producer threads are equally assigned
between them several data folders from the subset that is assigned to this Producer instance.

Once the Producer instances are started, the individual threads begin to read data folders in parallel. The files
inside each folder are sorted according to their filename and are one by one loaded as a JsonNode. Each object
in the JsonNode results in a message that is sent to the Kafka Topic of choice. If the destination Kafka Topic has
more than one partition configured, then the messages are introduced to the applicable partition based on the
filename processed.

3.3.2 Kafka Connect type Connector for the VFI/PAP Smartphone app live data

The figure below presents a simplified class diagram containing only class names to support the discussion. A
complete class description with fields and methods can be found in APPENDIX D of this document.

Figure 3.9 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 117

The classes with the yellow underline represent new code whereas other classes are imported from existing
libraries. The language used for the implementation is Java (compatible with JDK 1.8 u31 or later).

For the purpose of introducing the PAP/VFI Smartphone app data to the Track&Know Platform, the Kafka
Connect functionality was used. More specifically a custom Kafka Connect Source Connector was developed
which is deployed in a highly available Connect Cluster. Once the connector is instantiated the Connect Cluster
Workers perform the work of retrieving the PAP/VFI Smartphone app data and load them into the topic of choice
according to the code of the connector and its configuration. In the case of failure of a specific worker node, the
other remaining nodes of the cluster will continue to run the connector code. This means that even at the case
of failure of a node, the PAP/VFI Smartphone app data will continue to enter the Platform.

The PapVfiRtSourceConnector shown above is packaged as a Kafka Connect module and can be configured and
instantiated in the Kafka Connect Cluster. This connector reads the configuration from the
PapVfiSourceConnectorConfig which is entered prior to starting the connector and is used to initialise this object.
Configuration values that need to be checked in the PapVfiSourceConnectorConfig are checked using the
FetchItemsValidator and IntervalSecsValidator which impose restrictions to the max items to be fetched in each
call to the VFI System and the frequency that the data will be fetched at. These validators allow a maximum of
1000 vehicles data every 60 seconds to be fetched according to the (as of now) guidelines from VFI. If the
configuration is not valid the connector will not start. Provided that the PapVfiRtSourceConnector manages to
validate the configuration, it proceeds to create the necessary PapVfiRtSourceTask(s). In this implementation the
PapVfiRtSourceConnector starts exactly one PapVfiRtSourceTask. While the connector runs, the
PapVfiRtSourceTask is assigned to a worker in the Kafka Connect Cluster according to workers load, automatically
by Kafka Connect. The PapVfiRtSourceTask, by using values from the PapVfiSourceConnectorConfig proceeds to
use a SimpleRESTServiceClient which initiates an HttpURLConnection to the VFI Server and by making a POST
Request it receives a response containing the journey data in JSON format. The response is used to create and
initialise a JSONObject containing all the received information organised in a JSONArray. Each of the 1000 internal
JSONObject items that the array contains are passed to the constructor of the PapSensorDataRt which creates
SourceRecord objects according to the PapVfiSchemas for the gathered data. The PapVfiSchemas class provides
the schema for each Key for the Apache Kafka SourceRecord and the schema for the actual value of the
SourceRecord. Depending on the data items retrieved the VfiRtSourceTask creates from 0 to many (max 1000 in
this case) SourceRecords that the Kafka Connect Worker running the task will write to the topic selected in the
PapVfiSourceConnectorConfig. The procedure described above occurs indefinitely and at the interval selected
(at minimum every 60 seconds). The Logger is instantiated by each component that needs to provide log output.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 118

4 Conclusions
This Annex provided further insight to specific Track&Know Platform components and to custom Integration
Connectors implemented and presented in "D2.3 Development of Toolboxes Integration Connectors" [1].
According to recommendations and feedback received at the midterm project review in M18 of the project,
additional technical diagrams giving low level information were presented together with API end point
information. Furthermore, descriptions of parts developed in the project against ready components were
provided and the technologies, programming languages, and other specifications were further highlighted
providing further documentation.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 119

5 References

[1] Track&Know, "D2.3 Development of Toolboxes Integration Connectors," Track&Know, 2019.

[2] Hetzner, "Truly thrifty cloud hosting," Hetzner Online GmbH, [Online]. Available:
https://www.hetzner.com/cloud. [Accessed 16 11 2018].

[3] T. A. S. Foundation, "Welcome to Apache ZooKeeper," The Apache Software Foundation, 2019. [Online].
Available: https://zookeeper.apache.org/. [Accessed 18 07 2019].

[4] J. Laskowski, "Broker Nodes — Kafka Servers · The Internals of Apache Kafka," GitBook, 2019. [Online].
Available: https://jaceklaskowski.gitbooks.io/apache-kafka/kafka-brokers.html. [Accessed 18 07 2019].

[5] Confluent, "REST Proxy," Confluent inc, 2019. [Online]. Available: https://docs.confluent.io/current/kafka-
rest/index.html. [Accessed 17 07 2019].

[6] Confluent, "Schema Registry - Confluent Platform," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/schema-registry/docs/index.html. [Accessed 13 11 2018].

[7] Confluent, "Kafka Connect Architecture," Confluent Inc, [Online]. Available:
https://docs.confluent.io/current/connect/design.html. [Accessed 13 11 2018].

[8] C. inc, "Schema Registry API Reference," Confluent inc, 2019. [Online]. Available:
https://docs.confluent.io/current/schema-registry/develop/api.html. [Accessed 19 07 2019].

[9] Confluent, "Kafka Connect REST Interface," Confluent, 2019. [Online]. Available:
https://docs.confluent.io/current/connect/references/restapi.html. [Accessed 19 07 2019].

[10] P. Authors, "Prometheus - Monitoring system & time series database," The Linux Foundation, 2019.
[Online]. Available: https://prometheus.io/. [Accessed 18 07 2019].

[11] G. Labs, "Grafana - The open platform for analytics and monitoring," Grafana Labs, 2019. [Online].
Available: https://grafana.com/. [Accessed 18 07 2019].

[12] Yahoo, "Kafka Manager," Yahoo, [Online]. Available: https://github.com/yahoo/kafka-manager. [Accessed
10 10 2018].

[13] LinkedIn, "Kafka Monitor," LinkedIn, [Online]. Available: https://github.com/linkedin/kafka-monitor.
[Accessed 10 10 2018].

[14] Elkosmon, "ZooNavigator," [Online]. Available: https://github.com/elkozmon/zoonavigator. [Accessed 10
10 2018].

[15] Landoop, "Kafka Connect UI," Landoop, [Online]. Available: https://github.com/Landoop/kafka-connect-ui.
[Accessed 10 10 2018].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 120

[16] Landoop, "Schema Registry UI," Landoop, [Online]. Available: https://github.com/Landoop/schema-
registry-ui. [Accessed 10 10 2018].

[17] Apache, "Apache Kafka," The Apache Software Foundation, [Online]. Available: https://kafka.apache.org/.
[Accessed 05 04 2018].

[18] T. A. S. Foundation, "Apache Zookeeper," The Apache Software Foundation, 2019. [Online]. Available:
https://zookeeper.apache.org/. [Accessed 17 07 2019].

[19] TigerVNC, "TigerVNC," TigerVNC, 2019. [Online]. Available: https://tigervnc.org/. [Accessed 18 07 2019].

[20] noVNC, "noVNC Open Source VNC Client," noVNC, [Online]. Available: https://novnc.com/info.html.
[Accessed 16 11 2018].

[21] Track&Know, "D6.1 Experiments Planning and Setup," June 2018.

[22] C. inc, "Confluent REST Proxy API Reference," Confluent, 2019. [Online]. Available:
https://docs.confluent.io/current/kafka-rest/api.html. [Accessed 17 07 2019].

[23] C. inc, "Schema Registry API Reference," Confluent, 2019. [Online]. Available:
https://docs.confluent.io/current/schema-registry/develop/api.html. [Accessed 19 07 2019].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 121

6 APPENDIX A to ANNEX
In this appendix the REST Proxy API Reference is quoted as it appears in the relative online resource [22] for
convenience purposes and as requested:

The material in this appendix is Copyrighted by Confluent, Inc (© Copyright 2019, Confluent, Inc).

6.1 Content Types
The REST proxy uses content types for both requests and responses to indicate 3 properties of the data:
the serialization format (e.g. json), the version of the API (e.g. v2), and the embedded

format (e.g. json , binary or avro). Currently, the only serialization format supported is json and the

versions of the API are v1 and v2 .

The embedded format is the format of data you are producing or consuming, which are embedded into
requests or responses in the serialization format. For example, you can provide binary data in a json -
serialized request; in this case the data should be provided as a base64-encoded string and the content
type will be application/vnd.kafka.binary.v2+json . If your data is just JSON, you can use json as the
embedded format and embed it directly; in this case the content type will
be application/vnd.kafka.json.v2+json . The proxy also supports avro , in which case a JSON form of the data
can be embedded directly and a schema (or schema ID) should be included with the request. If Avro is
used, the content type will be application/vnd.kafka.avro.v2+json .

The format for the content type is:

application/vnd.kafka[.embedded_format].[api_version]+[serialization_format]

Copy

The serialization format can be omitted when there are no embedded messages (i.e. for metadata requests
you can use application/vnd.kafka.v2+json). The preferred content type

is application/vnd.kafka.[embedded_format].v1+json . However, other less specific content types are permitted,
including application/vnd.kafka+json to indicate no specific API version requirement (the most recent stable

version will be used), application/json , and application/octet-stream . The latter two are only supported for

compatibility and ease of use. In all cases, if the embedded format is omitted, binary is assumed. Although
using these less specific values is permitted, to remain compatible with future versions you should specify
preferred content types in requests and check the content types of responses.

Your requests should specify the most specific format and version information possible via the
HTTP Accept header:

Accept: application/vnd.kafka.v2+json

Copy

The server also supports content negotiation, so you may include multiple, weighted preferences:

Accept: application/vnd.kafka.v2+json; q=0.9, application/json; q=0.5

Copy

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 122

which can be useful when, for example, a new version of the API is preferred but you cannot be certain it is
available yet.

6.2 Errors
All API endpoints use a standard error message format for any requests that return an HTTP status
indicating an error (any 400 or 500 statuses). For example, a request entity that omits a required field may
generate the following response:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/vnd.kafka.v1+json

{
 "error_code": 422,
 "message": "records may not be empty"
}

Copy
Although it is good practice to check the status code, you may safely parse the response of any non-
DELETE API calls and check for the presence of an error_code field to detect errors.

Some error codes are used frequently across the entire API and you will probably want to have general
purpose code to handle these, whereas most other error codes will need to be handled on a per-request
basis.

ANY *

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found.
o Error code 40402 -- Partition not found.

 422 Unprocessable Entity -- The request payload is either improperly
formatted or contains semantic errors

 500 Internal Server Error --
o Error code 50001 -- Zookeeper error.
o Error code 50002 -- Kafka error.
o Error code 50003 -- Retriable Kafka error. Although the operation

failed, it's possible that retrying the request will be successful.
o Error code 50101 -- Only SSL endpoints were found for the specified

broker, but SSL is not supported for the invoked API yet.

6.3 Topics
The topics resource provides information about the topics in your Kafka cluster and their current state. It
also lets you produce messages by making POST requests to specific topics.

GET /topics

Get a list of Kafka topics.

Response JSON Object:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 123

 topics (array) -- List of topic names

Example request:

GET /topics HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

["topic1", "topic2"]

Copy

GET /topics/(string:topic_name)

Get metadata about a specific topic.

Parameters:
 topic_name (string) -- Name of the topic to get metadata about

Response JSON Object:

 name (string) -- Name of the topic
 configs (map) -- Per-topic configuration overrides
 partitions (array) -- List of partitions for this topic
 partitions[i].partition (int) -- the ID of this partition
 partitions[i].leader (int) -- the broker ID of the leader for this partition
 partitions[i].replicas (array) -- list of replicas for this partition, including

the leader
 partitions[i].replicas[j].broker (array) -- broker ID of the replica
 partitions[i].replicas[j].leader (boolean) -- true if this replica is the

leader for the partition
 partitions[i].replicas[j].in_sync (boolean) -- true if this replica is

currently in sync with the leader

Status Codes:
 404 Not Found --

o Error code 40401 -- Topic not found

Example request:

GET /topics/test HTTP/1.1
Accept: application/vnd.kafka.v2+json

Copy

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 124

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "name": "test",
 "configs": {
 "cleanup.policy": "compact"
 },
 "partitions": [
 {
 "partition": 1,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 }
]
 },
 {
 "partition": 2,
 "leader": 2,
 "replicas": [
 {
 "broker": 1,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": true,
 "in_sync": true,
 }
]
 }
]
}

Copy

POST /topics/(string:topic_name)

Produce messages to a topic, optionally specifying keys or partitions for the messages. If no
partition is provided, one will be chosen based on the hash of the key. If no key is provided, the
partition will be chosen for each message in a round-robin fashion.

For the avro embedded format, you must provide information about schemas and the REST proxy

must be configured with the URL to access Schema Registry (schema.registry.url). Schemas may
be provided as the full schema encoded as a string, or, after the initial request may be provided as
the schema ID returned with the first response.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 125

Parameters:
 topic_name (string) -- Name of the topic to produce the messages to

Request JSON Object:

 key_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 key_schema_id (int) -- ID returned by a previous request using the same
schema. This ID corresponds to the ID of the schema in the registry.

 value_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 value_schema_id (int) -- ID returned by a previous request using the
same schema. This ID corresponds to the ID of the schema in the
registry.

Request JSON Array of Objects:

 records -- A list of records to produce to the topic.
 records[i].key (object) -- The message key, formatted according to the

embedded format, or null to omit a key (optional)
 records[i].value (object) -- The message value, formatted according to

the embedded format
 records[i].partition (int) -- Partition to store the message in (optional)

Response JSON Object:

 key_schema_id (int) -- The ID for the schema used to produce keys, or
null if keys were not used

 value_schema_id (int) -- The ID for the schema used to produce values.

Response JSON Array of Objects:

 offsets (object) -- List of partitions and offsets the messages were
published to

 offsets[i].partition (int) -- Partition the message was published to, or null
if publishing the message failed

 offsets[i].offset (long) -- Offset of the message, or null if publishing the
message failed

 offsets[i].error_code (long) --

An error code classifying the reason this operation failed, or null
if it succeeded.

o 1 - Non-retriable Kafka exception
o 2 - Retriable Kafka exception; the message might be sent

successfully if retried
 offsets[i].error (string) -- An error message describing why the operation

failed, or null if it succeeded

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 126

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found

 422 Unprocessable Entity --
o Error code 42201 -- Request includes keys and uses a format that

requires schemas, but does not include
the key_schema or key_schema_id fields

o Error code 42202 -- Request includes values and uses a format that
requires schemas, but does not include
the value_schema or value_schema_id fields

o Error code 42205 -- Request includes invalid schema.

Example binary request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.binary.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "records": [
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50"
 },
 {
 "value": "a2Fma2E=",
 "partition": 1
 },
 {
 "value": "bG9ncw=="
 }
]
}

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 2,
 "offset": 100
 },
 {
 "partition": 1,
 "offset": 101
 },
 {
 "partition": 2,
 "offset": 102
 }

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 127

]
}

Copy

Example Avro request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.avro.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "value_schema": "{\"name\":\"int\",\"type\": \"int\"}",
 "records": [
 {
 "value": 12
 },
 {
 "value": 24,
 "partition": 1
 }
]
}

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": 32,
 "offsets": [
 {
 "partition": 2,
 "offset": 103
 },
 {
 "partition": 1,
 "offset": 104
 }
]
}

Copy

Example JSON request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.json.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "records": [
 {

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 128

 "key": "somekey",
 "value": {"foo": "bar"}
 },
 {
 "value": ["foo", "bar"],
 "partition": 1
 },
 {
 "value": 53.5
 }
]
}

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 2,
 "offset": 100
 },
 {
 "partition": 1,
 "offset": 101
 },
 {
 "partition": 2,
 "offset": 102
 }
]
}

Copy

6.4 Partitions
The partitions resource provides per-partition metadata, including the current leaders and replicas for each
partition. It also allows you to consume and produce messages to single partition
using GET and POST requests.

GET /topics/(string:topic_name)/partitions

Get a list of partitions for the topic.

Parameters:
 topic_name (string) -- the name of the topic

Response JSON Array of Objects:

 partition (int) -- ID of the partition
 leader (int) -- Broker ID of the leader for this partition

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 129

 replicas (array) -- List of brokers acting as replicas for this partition
 replicas[i].broker (int) -- Broker ID of the replica
 replicas[i].leader (boolean) -- true if this broker is the leader for the

partition
 replicas[i].in_sync (boolean) -- true if the replica is in sync with the

leader

Status Codes:
 404 Not Found --

o Error code 40401 -- Topic not found

Example request:

GET /topics/test/partitions HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

[
 {
 "partition": 1,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
 },
 {
 "partition": 2,
 "leader": 2,
 "replicas": [
 {
 "broker": 1,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": true,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 130

 "in_sync": true,
 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
 }
]

Copy

GET /topics/(string:topic_name)/partitions/(int:partition_id)

Get metadata about a single partition in the topic.

Parameters:
 topic_name (string) -- Name of the topic
 partition_id (int) -- ID of the partition to inspect

Response JSON Object:

 partition (int) -- ID of the partition
 leader (int) -- Broker ID of the leader for this partition
 replicas (array) -- List of brokers acting as replicas for this partition
 replicas[i].broker (int) -- Broker ID of the replica
 replicas[i].leader (boolean) -- true if this broker is the leader for the

partition
 replicas[i].in_sync (boolean) -- true if the replica is in sync with the

leader

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40402 -- Partition not found

Example request:

GET /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "partition": 1,
 "leader": 1,
 "replicas": [
 {

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 131

 "broker": 1,
 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
}

Copy

POST /topics/(string:topic_name)/partitions/(int:partition_id)

Produce messages to one partition of the topic. For the avro embedded format, you must provide
information about schemas. This may be provided as the full schema encoded as a string, or, after
the initial request may be provided as the schema ID returned with the first response.

Parameters:
 topic_name (string) -- Topic to produce the messages to
 partition_id (int) -- Partition to produce the messages to

Request JSON Object:

 key_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 key_schema_id (int) -- ID returned by a previous request using the same
schema. This ID corresponds to the ID of the schema in the registry.

 value_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 value_schema_id (int) -- ID returned by a previous request using the
same schema. This ID corresponds to the ID of the schema in the
registry.

 records -- A list of records to produce to the partition.

Request JSON Array of Objects:

 records[i].key (object) -- The message key, formatted according to the
embedded format, or null to omit a key (optional)

 records[i].value (object) -- The message value, formatted according to
the embedded format

Response JSON Object:

 key_schema_id (int) -- The ID for the schema used to produce keys, or
null if keys were not used

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 132

 value_schema_id (int) -- The ID for the schema used to produce values.

Response JSON Array of Objects:

 offsets (object) -- List of partitions and offsets the messages were
published to

 offsets[i].partition (int) -- Partition the message was published to. This
will be the same as the partition_id parameter and is provided only to

maintain consistency with responses from producing to a topic
 offsets[i].offset (long) -- Offset of the message
 offsets[i].error_code (long) --

An error code classifying the reason this operation failed, or null
if it succeeded.

o 1 - Non-retriable Kafka exception
o 2 - Retriable Kafka exception; the message might be sent

successfully if retried
 offsets[i].error (string) -- An error message describing why the operation

failed, or null if it succeeded

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40402 -- Partition not found

 422 Unprocessable Entity --
o Error code 42201 -- Request includes keys and uses a format that

requires schemas, but does not include
the key_schema or key_schema_id fields

o Error code 42202 -- Request includes values and uses a format that
requires schemas, but does not include
the value_schema or value_schema_id fields

o Error code 42205 -- Request includes invalid schema.

Example binary request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.binary.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "records": [
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50"
 },
 {
 "value": "a2Fma2E="
 }
]
}

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 133

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,
 "offset": 101,
 }
]
}

Copy

Example Avro request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.avro.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "value_schema": "{\"name\":\"int\",\"type\": \"int\"}"
 "records": [
 {
 "value": 25
 },
 {
 "value": 26
 }
]
}

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": 32,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 134

 "offset": 101,
 }
]
}

Copy

Example JSON request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.json.v2+json
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "records": [
 {
 "key": "somekey",
 "value": {"foo": "bar"}
 },
 {
 "value": 53.5
 }
]
}

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,
 "offset": 101,
 }
]
}

Copy

6.5 Consumers
The consumers resource provides access to the current state of consumer groups, allows you to create a
consumer in a consumer group and consume messages from topics and partitions. The proxy can convert
data stored in Kafka in serialized form into a JSON-compatible embedded format. Currently three formats
are supported: raw binary data is encoded as base64 strings, Avro data is converted into embedded JSON
objects, and JSON is embedded directly.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 135

Because consumers are stateful, any consumer instances created with the REST API are tied to a specific
REST proxy instance. A full URL is provided when the instance is created and it should be used to
construct any subsequent requests. Failing to use the returned URL for future consumer requests will result
in 404 errors because the consumer instance will not be found. If a REST proxy instance is shutdown, it will
attempt to cleanly destroy any consumers before it is terminated.

POST /consumers/(string:group_name)

Create a new consumer instance in the consumer group. The format parameter controls the

deserialization of data from Kafka and the content type that must be used in the Accept header of
subsequent read API requests performed against this consumer. For example, if the creation
request specifies avro for the format, subsequent read requests should

use Accept: application/vnd.kafka.avro.v2+json .

Note that the response includes a URL including the host since the consumer is stateful and tied to
a specific REST proxy instance. Subsequent examples in this section use a Host header for this
specific REST proxy instance.

Parameters:
 group_name (string) -- The name of the consumer group to join

Request JSON Object:

 name (string) -- Name for the consumer instance, which will be used in
URLs for the consumer. This must be unique, at least within the proxy
process handling the request. If omitted, falls back on the automatically
generated ID. Using automatically generated names is recommended for
most use cases.

 format (string) -- The format of consumed messages, which is used to
convert messages into a JSON-compatible form. Valid values: "binary",
"avro", "json". If unspecified, defaults to "binary".

 auto.offset.reset (string) -- Sets the auto.offset.reset setting for the

consumer
 auto.commit.enable (string) -- Sets the auto.commit.enable setting for

the consumer
 fetch.min.bytes (string) -- Sets the fetch.min.bytes setting for this

consumer specifically
 consumer.request.timeout.ms (string) -- Sets

the consumer.request.timeout.ms setting for this consumer specifically.

This setting controls the maximum total time to wait for messages for a
request if the maximum request size has not yet been reached. It does not
affect the underlying consumer->broker connection. Default value is taken
from the REST proxy config file

Response JSON Object:

 instance_id (string) -- Unique ID for the consumer instance in this group.
 base_uri (string) -- Base URI used to construct URIs for subsequent

requests against this consumer instance. This will be of the

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 136

form http://hostname:port/consumers/consumer_group/instances/instanc

e_id .

Status
Codes:

 409 Conflict --
o Error code 40902 -- Consumer instance with the specified name

already exists.
 422 Unprocessable Entity --

o Error code 42204 -- Invalid consumer configuration. One of the
settings specified in the request contained an invalid value.

Example request:

POST /consumers/testgroup/ HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "name": "my_consumer",
 "format": "binary",
 "auto.offset.reset": "earliest",
 "auto.commit.enable": "false"
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "instance_id": "my_consumer",
 "base_uri": "http://proxy-instance.kafkaproxy.example.com/consumers/testgroup/instances/my_
consumer"
}

Copy

DELETE /consumers/(string:group_name)/instances/(string:instance)

Destroy the consumer instance.

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Status Codes: 404 Not Found --

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 137

o Error code 40403 -- Consumer instance not found

Example request:

DELETE /consumers/testgroup/instances/my_consumer HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

Copy

Example response:

HTTP/1.1 204 No Content

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/offsets

Commit a list of offsets for the consumer. When the post body is empty, it commits all the records
that have been fetched by the consumer instance.

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 offsets -- A list of offsets to commit for partitions
 offsets[i].topic (string) -- Name of the topic
 offsets[i].partition (int) -- Partition ID
 offset -- the offset to commit

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

POST /consumers/testgroup/instances/my_consumer/offsets HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "offsets": [
 {
 "topic": "test",
 "partition": 0,
 "offset": 20
 },

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 138

 {
 "topic": "test",
 "partition": 1,
 "offset": 30
 }
]
}

Copy

GET /consumers/(string:group_name)/instances/(string:instance)/offsets

Get the last committed offsets for the given partitions (whether the commit happened by this
process or another).

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 partitions -- A list of partitions to find the last committed offsets for
 partitions[i].topic (string) -- Name of the topic
 partitions[i].partition (int) -- Partition ID

Response JSON Array of Objects:

 offsets -- A list of committed offsets
 offsets[i].topic (string) -- Name of the topic for which an offset was

committed
 offsets[i].partition (int) -- Partition ID for which an offset was committed
 offsets[i].offset (int) -- Committed offset
 offsets[i].metadata (string) -- Metadata for the committed offset

Status Codes:

 404 Not Found --
o Error code 40402 -- Partition not found
o Error code 40403 -- Consumer instance not found

Example request:

GET /consumers/testgroup/instances/my_consumer/offsets HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

{
 "partitions": [
 {
 "topic": "test",
 "partition": 0
 },

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 139

 {
 "topic": "test",
 "partition": 1
 }

]
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{"offsets":
 [
 {
 "topic": "test",
 "partition": 0,
 "offset": 21,
 "metadata":""
 },
 {
 "topic": "test",
 "partition": 1,
 "offset": 31,
 "metadata":""
 }
]
}

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/subscription

Subscribe to the given list of topics or a topic pattern to get dynamically assigned partitions. If a
prior subscription exists, it would be replaced by the latest subscription.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 topics -- A list of topics to subscribe
 topics[i].topic (string) -- Name of the topic

Request JSON Object:

 topic_pattern (string) -- A REGEX pattern. topics_pattern and topics

fields are mutually exclusive.

Status Codes: 404 Not Found --
o Error code 40403 -- Consumer instance not found

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 140

 409 Conflict --
o Error code 40903 -- Subscription to topics, partitions and pattern are

mutually exclusive.

Example request:

POST /consumers/testgroup/instances/my_consumer/subscription HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "topics": [
 "test1",
 "test2"
]
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

Example request:

POST /consumers/testgroup/instances/my_consumer/subscription HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "topic_pattern": "test.*"
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

GET /consumers/(string:group_name)/instances/(string:instance)/subscription

Get the current subscribed list of topics.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Response JSON Array of Objects:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 141

 topics -- A list of subscribed topics
 topics[i] (string) -- Name of the topic

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

GET /consumers/testgroup/instances/my_consumer/subscription HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json

Copy

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "topics": [
 "test1",
 "test2"
]
}

Copy

DELETE /consumers/(string:group_name)/instances/(string:instance)/subscription

Unsubscribe from topics currently subscribed.

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

DELETE /consumers/testgroup/instances/my_consumer/subscription HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

Copy

Example response:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 142

HTTP/1.1 204 No Content

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/assignments

Manually assign a list of partitions to this consumer.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 partitions -- A list of partitions to assign to this consumer
 partitions[i].topic (string) -- Name of the topic
 partitions[i].partition (int) -- Partition ID

Status Codes:

 404 Not Found --
o Error code 40403 -- Consumer instance not found

 409 Conflict --
o Error code 40903 -- Subscription to topics, partitions and pattern are

mutually exclusive.

Example request:

POST /consumers/testgroup/instances/my_consumer/assignments HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "partitions": [
 {
 "topic": "test",
 "partition": 0
 },
 {
 "topic": "test",
 "partition": 1
 }

]
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

GET /consumers/(string:group_name)/instances/(string:instance)/assignments

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 143

Get the list of partitions currently manually assigned to this consumer.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Response JSON Array of Objects:

 partitions -- A list of partitions manually to assign to this consumer
 partitions[i].topic (string) -- Name of the topic
 partitions[i].partition (int) -- Partition ID

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

GET /consumers/testgroup/instances/my_consumer/assignments HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json

Copy

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "partitions": [
 {
 "topic": "test",
 "partition": 0
 },
 {
 "topic": "test",
 "partition": 1
 }

]
}

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/positions

Overrides the fetch offsets that the consumer will use for the next set of records to fetch.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 144

 offsets -- A list of offsets
 offsets[i].topic (string) -- Name of the topic for
 offsets[i].partition (int) -- Partition ID
 offsets[i].offset (int) -- Seek to offset for the next set of records to fetch

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

POST /consumers/testgroup/instances/my_consumer/positions HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "offsets": [
 {
 "topic": "test",
 "partition": 0,
 "offset": 20
 },
 {
 "topic": "test",
 "partition": 1,
 "offset": 30
 }
]
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/positions/beginning

Seek to the first offset for each of the given partitions.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 partitions -- A list of partitions
 partitions[i].topic (string) -- Name of the topic
 partitions[i].partition (int) -- Partition ID

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 145

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

POST /consumers/testgroup/instances/my_consumer/positions/beginning HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Content-Type: application/vnd.kafka.v2+json

{
 "partitions": [
 {
 "topic": "test",
 "partition": 0
 },
 {
 "topic": "test",
 "partition": 1
 }

]
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/positions/end

Seek to the last offset for each of the given partitions.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Request JSON Array of Objects:

 partitions -- A list of partitions
 partitions[i].topic (string) -- Name of the topic
 partitions[i].partition (int) -- Partition ID

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

POST /consumers/testgroup/instances/my_consumer/positions/end HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 146

Content-Type: application/vnd.kafka.v2+json

{
 "partitions": [
 {
 "topic": "test",
 "partition": 0
 },
 {
 "topic": "test",
 "partition": 1
 }

]
}

Copy

Example response:

HTTP/1.1 204 No Content

Copy

GET /consumers/(string:group_name)/instances/(string:instance)/records

Fetch data for the topics or partitions specified using one of the subscribe/assign APIs.

The format of the embedded data returned by this request is determined by the format specified in
the initial consumer instance creation request and must match the format of the Accept header.

Mismatches will result in error code 40601 .

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Query Parameters:

 timeout -- Maximum amount of milliseconds the REST proxy will spend
fetching records. Other parameters controlling actual time spent fetching
records: max_bytes and fetch.min.bytes. Default value is undefined. This
parameter is used only if it's smaller than the consumer.timeout.ms that is
defined either during consumer instance creation or in the proxy's config
file.

 max_bytes -- The maximum number of bytes of unencoded keys and
values that should be included in the response. This provides
approximate control over the size of responses and the amount of
memory required to store the decoded response. The actual limit will be
the minimum of this setting and the server-side
configuration consumer.request.max.bytes . Default is unlimited.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 147

Response JSON Array of Objects:

 topic (string) -- The topic
 key (string) -- The message key, formatted according to the embedded

format
 value (string) -- The message value, formatted according to the

embedded format
 partition (int) -- Partition of the message
 offset (long) -- Offset of the message

Status Codes:

 404 Not Found --
o Error code 40403 -- Consumer instance not found

 406 Not Acceptable --
o Error code 40601 -- Consumer format does not match the embedded

format requested by the Accept header.

Example binary request:

GET /consumers/testgroup/instances/my_consumer/records?timeout=3000&max_bytes=300000 HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.binary.v2+json

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.binary.v2+json

[
 {
 "topic": "test",
 "key": "a2V5",
 "value": "Y29uZmx1ZW50",
 "partition": 1,
 "offset": 100,
 },
 {
 "topic": "test",
 "key": "a2V5",
 "value": "a2Fma2E=",
 "partition": 2,
 "offset": 101,
 }
]

Copy

Example Avro request:

GET /consumers/avrogroup/instances/my_avro_consumer/records?timeout=3000&max_bytes=300000 HTT
P/1.1
Host: proxy-instance.kafkaproxy.example.com

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 148

Accept: application/vnd.kafka.avro.v2+json

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.avro.v2+json

[
 {
 "topic": "test",
 "key": 1,
 "value": {
 "id": 1,
 "name": "Bill"
 },
 "partition": 1,
 "offset": 100,
 },
 {
 "topic": "test",
 "key": 2,
 "value": {
 "id": 2,
 "name": "Melinda"
 },
 "partition": 2,
 "offset": 101,
 }
]

Copy

Example JSON request:

GET /consumers/jsongroup/instances/my_json_consumer/records?timeout=3000&max_bytes=300000 HTT
P/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.json.v2+json

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.json.v2+json

[
 {
 "topic": "test",
 "key": "somekey",
 "value": {"foo":"bar"},
 "partition": 1,
 "offset": 10,
 },
 {
 "topic": "test",
 "key": "somekey",

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 149

 "value": ["foo", "bar"],
 "partition": 2,
 "offset": 11,
 }
]

Copy

6.6 Brokers
The brokers resource provides access to the current state of Kafka brokers in the cluster.

GET /brokers

Get a list of brokers.

Response JSON Object:

 brokers (array) -- List of broker IDs

Example request:

GET /brokers HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v2+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v2+json

{
 "brokers": [1, 2, 3]
}

Copy

6.7 Topics
The topics resource provides information about the topics in your Kafka cluster and their current state. It
also lets you produce messages by making POST requests to specific topics.

GET /topics

Get a list of Kafka topics.

Response JSON Object:

 topics (array) -- List of topic names

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 150

Example request:

GET /topics HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

["topic1", "topic2"]

Copy

GET /topics/(string:topic_name)

Get metadata about a specific topic.

Parameters:
 topic_name (string) -- Name of the topic to get metadata about

Response JSON Object:

 name (string) -- Name of the topic
 configs (map) -- Per-topic configuration overrides
 partitions (array) -- List of partitions for this topic
 partitions[i].partition (int) -- the ID of this partition
 partitions[i].leader (int) -- the broker ID of the leader for this partition
 partitions[i].replicas (array) -- list of replicas for this partition, including

the leader
 partitions[i].replicas[j].broker (array) -- broker ID of the replica
 partitions[i].replicas[j].leader (boolean) -- true if this replica is the

leader for the partition
 partitions[i].replicas[j].in_sync (boolean) -- true if this replica is

currently in sync with the leader

Status Codes:
 404 Not Found --

o Error code 40401 -- Topic not found

Example request:

GET /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 151

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "name": "test",
 "configs": {
 "cleanup.policy": "compact"
 },
 "partitions": [
 {
 "partition": 1,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 }
]
 },
 {
 "partition": 2,
 "leader": 2,
 "replicas": [
 {
 "broker": 1,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": true,
 "in_sync": true,
 }
]
 }
]
}

Copy

POST /topics/(string:topic_name)

Produce messages to a topic, optionally specifying keys or partitions for the messages. If no
partition is provided, one will be chosen based on the hash of the key. If no key is provided, the
partition will be chosen for each message in a round-robin fashion.

We currently support Avro, JSON and binary message formats.

For the avro embedded format, you must provide information about schemas and the REST proxy

must be configured with the URL to access Schema Registry (schema.registry.url). Schemas may
be provided as the full schema encoded as a string, or, after the initial request may be provided as
the schema ID returned with the first response. Note that if you use Avro for value you must also
use Avro for the key, but the key and value may have different schemas.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 152

Parameters:
 topic_name (string) -- Name of the topic to produce the messages to

Request JSON Object:

 key_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data). This is only needed for Avro format.

 key_schema_id (int) -- ID returned by a previous request using the same
schema. This ID corresponds to the ID of the schema in the registry.

 value_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data). This is only needed for Avro format.

 value_schema_id (int) -- ID returned by a previous request using the
same schema. This ID corresponds to the ID of the schema in the
registry.

Request JSON Array of Objects:

 records -- A list of records to produce to the topic.
 records[i].key (object) -- The message key, formatted according to the

embedded format, or null to omit a key (optional)
 records[i].value (object) -- The message value, formatted according to

the embedded format
 records[i].partition (int) -- Partition to store the message in (optional)

Response JSON Object:

 key_schema_id (int) -- The ID for the schema used to produce keys, or
null if keys were not used

 value_schema_id (int) -- The ID for the schema used to produce values.

Response JSON Array of Objects:

 offsets (object) -- List of partitions and offsets the messages were
published to

 offsets[i].partition (int) -- Partition the message was published to, or null
if publishing the message failed

 offsets[i].offset (long) -- Offset of the message, or null if publishing the
message failed

 offsets[i].error_code (long) --

An error code classifying the reason this operation failed, or null
if it succeeded.

o 1 - Non-retriable Kafka exception
o 2 - Retriable Kafka exception; the message might be sent

successfully if retried
 offsets[i].error (string) -- An error message describing why the operation

failed, or null if it succeeded

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 153

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found

 422 Unprocessable Entity --
o Error code 42201 -- Request includes keys and uses a format that

requires schemas, but does not include
the key_schema or key_schema_id fields

o Error code 42202 -- Request includes values and uses a format that
requires schemas, but does not include
the value_schema or value_schema_id fields

o Error code 42205 -- Request includes invalid schema.

Example binary request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.binary.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "records": [
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50"
 },
 {
 "value": "a2Fma2E=",
 "partition": 1
 },
 {
 "value": "bG9ncw=="
 }
]
}

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 2,
 "offset": 100
 },
 {
 "partition": 1,
 "offset": 101
 },
 {
 "partition": 2,
 "offset": 102
 }

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 154

]
}

Copy

Example Avro request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.avro.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "value_schema": "{\"name\":\"int\",\"type\": \"int\"}"
 "records": [
 {
 "value": 12
 },
 {
 "value": 24,
 "partition": 1
 }
]
}

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": 32,
 "offsets": [
 {
 "partition": 2,
 "offset": 103
 },
 {
 "partition": 1,
 "offset": 104
 }
]
}

Copy

Example JSON request:

POST /topics/test HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.json.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "records": [
 {

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 155

 "key": "somekey",
 "value": {"foo": "bar"}
 },
 {
 "value": ["foo", "bar"],
 "partition": 1
 },
 {
 "value": 53.5
 }
]
}

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 2,
 "offset": 100
 },
 {
 "partition": 1,
 "offset": 101
 },
 {
 "partition": 2,
 "offset": 102
 }
]
}

Copy

6.8 Partitions
The partitions resource provides per-partition metadata, including the current leaders and replicas for each
partition. It also allows you to consume and produce messages to single partition
using GET and POST requests.

GET /topics/(string:topic_name)/partitions

Get a list of partitions for the topic.

Parameters:
 topic_name (string) -- the name of the topic

Response JSON Array of Objects:

 partition (int) -- ID of the partition
 leader (int) -- Broker ID of the leader for this partition

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 156

 replicas (array) -- List of brokers acting as replicas for this partition
 replicas[i].broker (int) -- Broker ID of the replica
 replicas[i].leader (boolean) -- true if this broker is the leader for the

partition
 replicas[i].in_sync (boolean) -- true if the replica is in sync with the

leader

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found

Example request:

GET /topics/test/partitions HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

[
 {
 "partition": 1,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,
 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
 },
 {
 "partition": 2,
 "leader": 2,
 "replicas": [
 {
 "broker": 1,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": true,
 "in_sync": true,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 157

 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
 }
]

Copy

GET /topics/(string:topic_name)/partitions/(int:partition_id)

Get metadata about a single partition in the topic.

Parameters:
 topic_name (string) -- Name of the topic
 partition_id (int) -- ID of the partition to inspect

Response JSON Object:

 partition (int) -- ID of the partition
 leader (int) -- Broker ID of the leader for this partition
 replicas (array) -- List of brokers acting as replicas for this partition
 replicas[i].broker (int) -- Broker ID of the replica
 replicas[i].leader (boolean) -- true if this broker is the leader for the

partition
 replicas[i].in_sync (boolean) -- true if the replica is in sync with the

leader

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40402 -- Partition not found

Example request:

GET /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "partition": 1,
 "leader": 1,
 "replicas": [
 {
 "broker": 1,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 158

 "leader": true,
 "in_sync": true,
 },
 {
 "broker": 2,
 "leader": false,
 "in_sync": true,
 },
 {
 "broker": 3,
 "leader": false,
 "in_sync": false,
 }
]
}

Copy

GET /topics/(string:topic_name)/partitions/(int:partition_id)/messages?offset=(int)[&count=(int)
]

Consume messages from one partition of the topic.

Parameters:
 topic_name (string) -- Topic to consume the messages from
 partition_id (int) -- Partition to consume the messages from

Query Parameters:

 offset (int) -- Offset to start from
 count (int) -- Number of messages to consume (optional). Default is 1.

Response JSON Array of Objects:

 key (string) -- The message key, formatted according to the embedded
format

 value (string) -- The message value, formatted according to the
embedded format

 partition (int) -- Partition of the message
 offset (long) -- Offset of the message

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40402 -- Partition not found
o Error code 40404 -- Leader not available

 500 Internal Server Error --
o Error code 500 -- General consumer error response, caused by an

exception during the operation. An error message is included in the
standard format which explains the cause.

 503 Service Unavailable --
o Error code 50301 -- No SimpleConsumer is available at the time in

the pool. The request can be retried. You can increase the pool size
or the pool timeout to avoid this error in the future.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 159

Example binary request:

GET /topic/test/partitions/1/messages?offset=10&count=2 HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.binary.v1+json

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.binary.v1+json

[
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50",
 "partition": 1,
 "offset": 10,
 },
 {
 "key": "a2V5",
 "value": "a2Fma2E=",
 "partition": 1,
 "offset": 11,
 }
]

Copy

Example Avro request:

GET /topic/test/partitions/1/messages?offset=1 HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.avro.v1+json

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.avro.v1+json

[
 {
 "key": 1,
 "value": {
 "id": 1,
 "name": "Bill"
 },
 "partition": 1,
 "offset": 1,
 }
]

Copy

Example JSON request:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 160

GET /topic/test/partitions/1/messages?offset=10&count=2 HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.json.v1+json

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.json.v1+json

[
 {
 "key": "somekey",
 "value": {"foo":"bar"},
 "partition": 1,
 "offset": 10,
 },
 {
 "key": "somekey",
 "value": ["foo", "bar"],
 "partition": 1,
 "offset": 11,
 }
]

Copy

POST /topics/(string:topic_name)/partitions/(int:partition_id)

Produce messages to one partition of the topic. For the avro embedded format, you must provide
information about schemas. This may be provided as the full schema encoded as a string, or, after
the initial request may be provided as the schema ID returned with the first response.

Parameters:
 topic_name (string) -- Topic to produce the messages to
 partition_id (int) -- Partition to produce the messages to

Request JSON Object:

 key_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 key_schema_id (int) -- ID returned by a previous request using the same
schema. This ID corresponds to the ID of the schema in the registry.

 value_schema (string) -- Full schema encoded as a string (e.g. JSON
serialized for Avro data)

 value_schema_id (int) -- ID returned by a previous request using the
same schema. This ID corresponds to the ID of the schema in the
registry.

 records -- A list of records to produce to the partition.

Request JSON Array of Objects:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 161

 records[i].key (object) -- The message key, formatted according to the
embedded format, or null to omit a key (optional)

 records[i].value (object) -- The message value, formatted according to
the embedded format

Response JSON Object:

 key_schema_id (int) -- The ID for the schema used to produce keys, or
null if keys were not used

 value_schema_id (int) -- The ID for the schema used to produce values.

Response JSON Array of Objects:

 offsets (object) -- List of partitions and offsets the messages were
published to

 offsets[i].partition (int) -- Partition the message was published to. This
will be the same as the partition_id parameter and is provided only to

maintain consistency with responses from producing to a topic
 offsets[i].offset (long) -- Offset of the message
 offsets[i].error_code (long) --

An error code classifying the reason this operation failed, or null
if it succeeded.

o 1 - Non-retriable Kafka exception
o 2 - Retriable Kafka exception; the message might be sent

successfully if retried
 offsets[i].error (string) -- An error message describing why the operation

failed, or null if it succeeded

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40402 -- Partition not found

 422 Unprocessable Entity --
o Error code 42201 -- Request includes keys and uses a format that

requires schemas, but does not include
the key_schema or key_schema_id fields

o Error code 42202 -- Request includes values and uses a format that
requires schemas, but does not include
the value_schema or value_schema_id fields

o Error code 42205 -- Request includes invalid schema.

Example binary request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.binary.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 162

{
 "records": [
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50"
 },
 {
 "value": "a2Fma2E="
 }
]
}

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,
 "offset": 101,
 }
]
}

Copy

Example Avro request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.avro.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "value_schema": "{\"name\":\"int\",\"type\": \"int\"}"
 "records": [
 {
 "value": 25
 },
 {
 "value": 26
 }
]
}

Copy

Example Avro response:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 163

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": 32,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,
 "offset": 101,
 }
]
}

Copy

Example JSON request:

POST /topics/test/partitions/1 HTTP/1.1
Host: kafkaproxy.example.com
Content-Type: application/vnd.kafka.json.v1+json
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "records": [
 {
 "key": "somekey",
 "value": {"foo": "bar"}
 },
 {
 "value": 53.5
 }
]
}

Copy

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "key_schema_id": null,
 "value_schema_id": null,
 "offsets": [
 {
 "partition": 1,
 "offset": 100,
 },
 {
 "partition": 1,
 "offset": 101,
 }
]

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 164

}

Copy

6.9 Consumers
The consumers resource provides access to the current state of consumer groups, allows you to create a
consumer in a consumer group and consume messages from topics and partitions. The proxy can convert
data stored in Kafka in serialized form into a JSON-compatible embedded format. Currently three formats
are supported: raw binary data is encoded as base64 strings, Avro data is converted into embedded JSON
objects, and JSON is embedded directly.

Because consumers are stateful, any consumer instances created with the REST API are tied to a specific
REST proxy instance. A full URL is provided when the instance is created and it should be used to
construct any subsequent requests. Failing to use the returned URL for future consumer requests will result
in 404 errors because the consumer instance will not be found. If a REST proxy instance is shutdown, it will
attempt to cleanly destroy any consumers before it is terminated.

Consumers may not change the set of topics they are subscribed to once they have started consuming
messages. For example, if a consumer is created without specifying topic subscriptions, the first read from
a topic will subscribe the consumer to that topic and attempting to read from another topic will cause an
error.

POST /consumers/(string:group_name)

Create a new consumer instance in the consumer group. The format parameter controls the

deserialization of data from Kafka and the content type that must be used in the Accept header of
subsequent read API requests performed against this consumer. For example, if the creation
request specifies avro for the format, subsequent read requests should

use Accept: application/vnd.kafka.avro.v1+json .

Note that the response includes a URL including the host since the consumer is stateful and tied to
a specific REST proxy instance. Subsequent examples in this section use a Host header for this
specific REST proxy instance.

Parameters:
 group_name (string) -- The name of the consumer group to join

Request JSON Object:

 id (string) -- DEPRECATED Unique ID for the consumer instance in this
group. If omitted, one will be automatically generated

 name (string) -- Name for the consumer instance, which will be used in
URLs for the consumer. This must be unique, at least within the proxy
process handling the request. If omitted, falls back on the automatically
generated ID. Using automatically generated names is recommended for
most use cases.

 format (string) -- The format of consumed messages, which is used to
convert messages into a JSON-compatible form. Valid values: "binary",
"avro", "json". If unspecified, defaults to "binary".

 auto.offset.reset (string) -- Sets the auto.offset.reset setting for the
consumer

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 165

 auto.commit.enable (string) -- Sets the auto.commit.enable setting for

the consumer

Response JSON Object:

 instance_id (string) -- Unique ID for the consumer instance in this group.
If provided in the initial request, this will be identical to id .

 base_uri (string) -- Base URI used to construct URIs for subsequent
requests against this consumer instance. This will be of the
form http://hostname:port/consumers/consumer_group/instances/instanc

e_id .

Status
Codes:

 409 Conflict --
o Error code 40902 -- Consumer instance with the specified name

already exists.
 422 Unprocessable Entity --

o Error code 42204 -- Invalid consumer configuration. One of the
settings specified in the request contained an invalid value.

Example request:

POST /consumers/testgroup/ HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{
 "name": "my_consumer",
 "format": "binary",
 "auto.offset.reset": "smallest",
 "auto.commit.enable": "false"
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "instance_id": "my_consumer",
 "base_uri": "http://proxy-instance.kafkaproxy.example.com/consumers/testgroup/instances/my_
consumer"
}

Copy

POST /consumers/(string:group_name)/instances/(string:instance)/offsets

Commit offsets for the consumer. Returns a list of the partitions with the committed offsets.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 166

The body of this request is empty. The offsets are determined by the current state of the consumer
instance on the proxy. The returned state includes both consumed and committed offsets. After a
successful commit, these should be identical; however, both are included so the output format is
consistent with other API calls that return the offsets.

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Response JSON Array of Objects:

 topic (string) -- Name of the topic for which an offset was committed
 partition (int) -- Partition ID for which an offset was committed
 consumed (long) -- The offset of the most recently consumed message
 committed (long) -- The committed offset value. If the commit was

successful, this should be identical to consumed .

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

POST /consumers/testgroup/instances/my_consumer/offsets HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

[
 {
 "topic": "test",
 "partition": 1,
 "consumed": 100,
 "committed": 100
 },
 {
 "topic": "test",
 "partition": 2,
 "consumed": 200,
 "committed": 200
 },
 {
 "topic": "test2",
 "partition": 1,
 "consumed": 50,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 167

 "committed": 50
 }
]

Copy

DELETE /consumers/(string:group_name)/instances/(string:instance)

Destroy the consumer instance.

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:
 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance

Status Codes:
 404 Not Found --

o Error code 40403 -- Consumer instance not found

Example request:

DELETE /consumers/testgroup/instances/my_consumer HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 204 No Content

Copy

GET /consumers/(string:group_name)/instances/(string:instance)/topics/(string:topic_name)

Consume messages from a topic. If the consumer is not yet subscribed to the topic, this adds it as
a subscriber, possibly causing a consumer rebalance.

The format of the embedded data returned by this request is determined by the format specified in
the initial consumer instance creation request and must match the format of the Accept header.

Mismatches will result in error code 40601 .

Note that this request must be made to the specific REST proxy instance holding the consumer
instance.

Parameters:

 group_name (string) -- The name of the consumer group
 instance (string) -- The ID of the consumer instance
 topic_name (string) -- The topic to consume messages from.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 168

Query Parameters:

 max_bytes -- The maximum number of bytes of unencoded keys and
values that should be included in the response. This provides
approximate control over the size of responses and the amount of
memory required to store the decoded response. The actual limit will be
the minimum of this setting and the server-side
configuration consumer.request.max.bytes . Default is unlimited.

Response JSON Array of Objects:

 key (string) -- The message key, formatted according to the embedded
format

 value (string) -- The message value, formatted according to the
embedded format

 partition (int) -- Partition of the message
 offset (long) -- Offset of the message

Status Codes:

 404 Not Found --
o Error code 40401 -- Topic not found
o Error code 40403 -- Consumer instance not found

 406 Not Acceptable --
o Error code 40601 -- Consumer format does not match the embedded

format requested by the Accept header.

 409 Conflict --
o Error code 40901 -- Consumer has already initiated a subscription.

Consumers may subscribe to multiple topics, but all subscriptions
must be initiated in a single request.

 500 Internal Server Error --
o Error code 500 -- General consumer error response, caused by an

exception during the operation. An error message is included in the
standard format which explains the cause.

Example binary request:

GET /consumers/testgroup/instances/my_consumer/topics/test_topic HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.binary.v1+json

Copy

Example binary response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.binary.v1+json

[
 {
 "key": "a2V5",
 "value": "Y29uZmx1ZW50",
 "partition": 1,

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 169

 "offset": 100,
 "topic": "test_topic"
 },
 {
 "key": "a2V5",
 "value": "a2Fma2E=",
 "partition": 2,
 "offset": 101,
 "topic": "test_topic"
 }
]

Copy

Example Avro request:

GET /consumers/avrogroup/instances/my_avro_consumer/topics/test_avro_topic HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.avro.v1+json

Copy

Example Avro response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.avro.v1+json

[
 {
 "key": 1,
 "value": {
 "id": 1,
 "name": "Bill"
 },
 "partition": 1,
 "offset": 100,
 "topic": "test_avro_topic"
 },
 {
 "key": 2,
 "value": {
 "id": 2,
 "name": "Melinda"
 },
 "partition": 2,
 "offset": 101,
 "topic": "test_avro_topic"
 }
]

Copy

Example JSON request:

GET /consumers/jsongroup/instances/my_json_consumer/topics/test_json_topic HTTP/1.1
Host: proxy-instance.kafkaproxy.example.com
Accept: application/vnd.kafka.json.v1+json

Copy

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 170

Example JSON response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.json.v1+json

[
 {
 "key": "somekey",
 "value": {"foo":"bar"},
 "partition": 1,
 "offset": 10,
 "topic": "test_json_topic"
 },
 {
 "key": "somekey",
 "value": ["foo", "bar"],
 "partition": 2,
 "offset": 11,
 "topic": "test_json_topic"
 }
]

Copy

6.10 Brokers
The brokers resource provides access to the current state of Kafka brokers in the cluster.

GET /brokers

Get a list of brokers.

Response JSON Object:

 brokers (array) -- List of broker IDs

Example request:

GET /brokers HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.kafka.v1+json

{
 "brokers": [1, 2, 3]
}

Please note that all the material included in APPENDIX A is taken from its online source found in [22].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 171

7 APPENDIX B to ANNEX
In this appendix the Schema Registry API Reference is quoted as it appears in the relative online resource [23]
for convenience purposes and as requested:

The material in this appendix is Copyrighted by Confluent, Inc (© Copyright 2019, Confluent, Inc).

7.1 Compatibility
The Schema Registry server can enforce certain compatibility rules when new schemas are registered in a
subject. These are the compatibility types:

 BACKWARD : (default) consumers using the new schema can read data written by producers using the
latest registered schema

 BACKWARD_TRANSITIVE : consumers using the new schema can read data written by producers using all
previously registered schemas

 FORWARD : consumers using the latest registered schema can read data written by producers using the
new schema

 FORWARD_TRANSITIVE : consumers using all previously registered schemas can read data written by
producers using the new schema

 FULL : the new schema is forward and backward compatible with the latest registered schema

 FULL_TRANSITIVE : the new schema is forward and backward compatible with all previously registered
schemas

 NONE : schema compatibility checks are disabled

We recommend keeping the default backward compatibility since it's common to have all data loaded into
Hadoop.

For more details on Avro schema resolution, see Schema Evolution and Compatibility.

7.2 Content Types
The Schema Registry REST server uses content types for both requests and responses to indicate the
serialization format of the data as well as the version of the API being used. Currently, the only serialization
format supported is JSON and the only version of the API is v1 . However, to remain compatible with future
versions, you should specify preferred content types in requests and check the content types of responses.

The preferred format for content types is application/vnd.schemaregistry.v1+json , where v1 is the API

version and json is the serialization format. However, other less specific content types are permitted,

including application/vnd.schemaregistry+json to indicate no specific API version should be used (the most

recent stable version will be used), application/json , and application/octet-stream . The latter two are only
supported for compatibility and ease of use.

Your requests should specify the most specific format and version information possible via the
HTTP Accept header:

Accept: application/vnd.schemaregistry.v1+json

Copy

The server also supports content negotiation, so you may include multiple, weighted preferences:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 172

Accept: application/vnd.schemaregistry.v1+json; q=0.9, application/json; q=0.5

Copy

which can be useful when, for example, a new version of the API is preferred but you cannot be certain it is
available yet.

7.3 Errors
All API endpoints use a standard error message format for any requests that return an HTTP status
indicating an error (any 400 or 500 statuses). For example, a request entity that omits a required field may
generate the following response:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/vnd.schemaregistry.v1+json

{
 "error_code": 422,
 "message": "schema may not be empty"
}

Copy
Although it is good practice to check the status code, you may safely parse the response of any non-
DELETE API calls and check for the presence of an error_code field to detect errors.

7.4 Schemas

GET /schemas/ids/{int: id}

Get the schema string identified by the input ID.

Parameters:
 id (int) -- the globally unique identifier of the schema

Response JSON Object:

 schema (string) -- Schema string identified by the ID

Status Codes:

 404 Not Found --
o Error code 40403 -- Schema not found

 500 Internal Server Error --
o Error code 50001 -- Error in the backend datastore

Example request:

GET /schemas/ids/1 HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 173

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "schema": "{\"type\": \"string\"}"
}

Copy

7.5 Subjects
The subjects resource provides a list of all registered subjects in your Schema Registry. A subject refers to
the name under which the schema is registered. If you are using Schema Registry for Kafka, then a subject
refers to either a "<topic>-key" or "<topic>-value" depending on whether you are registering the key
schema for that topic or the value schema.

GET /subjects

Get a list of registered subjects.

Response JSON Array of Objects:

 name (string) -- Subject

Status Codes:
 500 Internal Server Error --

o Error code 50001 -- Error in the backend datastore

Example request:

GET /subjects HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

["subject1", "subject2"]

Copy

GET /subjects/(string: subject)/versions

Get a list of versions registered under the specified subject.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 174

Parameters:
 subject (string) -- the name of the subject

Response JSON Array of Objects:

 version (int) -- version of the schema registered under this subject

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found

 500 Internal Server Error --
o Error code 50001 -- Error in the backend datastore

Example request:

GET /subjects/test/versions HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

[
 1, 2, 3, 4
]

Copy

DELETE /subjects/(string: subject)

Deletes the specified subject and its associated compatibility level if registered. It is recommended
to use this API only when a topic needs to be recycled or in development environment.

Parameters:
 subject (string) -- the name of the subject

Response JSON Array of Objects:

 version (int) -- version of the schema deleted under this subject

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found

 500 Internal Server Error --
o Error code 50001 -- Error in the backend datastore

Example request:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 175

DELETE /subjects/test HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

[
 1, 2, 3, 4
]

Copy

GET /subjects/(string: subject)/versions/(versionId: version)

Get a specific version of the schema registered under this subject

Parameters:

 subject (string) -- Name of the subject
 version (versionId) -- Version of the schema to be returned. Valid values

for versionId are between [1,2^31-1] or the string "latest". "latest" returns
the last registered schema under the specified subject. Note that there
may be a new latest schema that gets registered right after this request is
served.

Response JSON Object:

 subject (string) -- Name of the subject that this schema is registered
under

 id (int) -- Globally unique identifier of the schema
 version (int) -- Version of the returned schema
 schema (string) -- The Avro schema string

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found
o Error code 40402 -- Version not found

 422 Unprocessable Entity --
o Error code 42202 -- Invalid version

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store

Example request:

GET /subjects/test/versions/1 HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 176

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "name": "test",
 "version": 1,
 "schema": "{\"type\": \"string\"}"
}

Copy

GET /subjects/(string: subject)/versions/(versionId: version)/schema

Get the avro schema for the specified version of this subject. The unescaped schema only is
returned.

Parameters:

 subject (string) -- Name of the subject
 version (versionId) -- Version of the schema to be returned. Valid values

for versionId are between [1,2^31-1] or the string "latest". "latest" returns
the last registered schema under the specified subject. Note that there
may be a new latest schema that gets registered right after this request is
served.

Response JSON Object:

 schema (string) -- The Avro schema string (unescaped)

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found
o Error code 40402 -- Version not found

 422 Unprocessable Entity --
o Error code 42202 -- Invalid version

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store

Example request:

GET /subjects/test/versions/1/schema HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 177

{"type": "string"}

Copy

POST /subjects/(string: subject)/versions

Register a new schema under the specified subject. If successfully registered, this returns the
unique identifier of this schema in the registry. The returned identifier should be used to retrieve this
schema from the schemas resource and is different from the schema's version which is associated
with the subject. If the same schema is registered under a different subject, the same identifier will
be returned. However, the version of the schema may be different under different subjects.

A schema should be compatible with the previously registered schema or schemas (if there are
any) as per the configured compatibility level. The configured compatibility level can be obtained by
issuing a GET http:get:: /config/(string: subject) . If that returns null, then GET http:get:: /config

When there are multiple instances of Schema Registry running in the same cluster, the schema
registration request will be forwarded to one of the instances designated as the primary. If the
primary is not available, the client will get an error code indicating that the forwarding has failed.

Parameters:
 subject (string) -- Subject under which the schema will be registered

Request JSON Object:

 schema -- The Avro schema string

Status Codes:

 409 Conflict -- Incompatible Avro schema
 422 Unprocessable Entity --

o Error code 42201 -- Invalid Avro schema
 500 Internal Server Error --

o Error code 50001 -- Error in the backend data store
o Error code 50002 -- Operation timed out
o Error code 50003 -- Error while forwarding the request to the primary

Example request:

POST /subjects/test/versions HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

{
 "schema":
 "{
 \"type\": \"record\",
 \"name\": \"test\",
 \"fields\":
 [
 {
 \"type\": \"string\",
 \"name\": \"field1\"
 },

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 178

 {
 \"type\": \"int\",
 \"name\": \"field2\"
 }
]
 }"
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{"id":1}

Copy

POST /subjects/(string: subject)

Check if a schema has already been registered under the specified subject. If so, this returns the
schema string along with its globally unique identifier, its version under this subject and the subject
name.

Parameters:
 subject (string) -- Subject under which the schema will be registered

Response JSON Object:

 subject (string) -- Name of the subject that this schema is registered
under

 id (int) -- Globally unique identifier of the schema
 version (int) -- Version of the returned schema
 schema (string) -- The Avro schema string

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found
o Error code 40403 -- Schema not found

 500 Internal Server Error -- Internal server error

Example request:

POST /subjects/test HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

{
 "schema":
 "{
 \"type\": \"record\",
 \"name\": \"test\",
 \"fields\":

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 179

 [
 {
 \"type\": \"string\",
 \"name\": \"field1\"
 },
 {
 \"type\": \"int\",
 \"name\": \"field2\"
 }
]
 }"
 }

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "subject": "test",
 "id": 1
 "version": 3
 "schema":
 "{
 \"type\": \"record\",
 \"name\": \"test\",
 \"fields\":
 [
 {
 \"type\": \"string\",
 \"name\": \"field1\"
 },
 {
 \"type\": \"int\",
 \"name\": \"field2\"
 }
]
 }"
 }

Copy

DELETE /subjects/(string: subject)/versions/(versionId: version)

Deletes a specific version of the schema registered under this subject. This only deletes the version
and the schema ID remains intact making it still possible to decode data using the schema ID. This
API is recommended to be used only in development environments or under extreme
circumstances where-in, its required to delete a previously registered schema for compatibility
purposes or re-register previously registered schema.

Parameters:

 subject (string) -- Name of the subject
 version (versionId) -- Version of the schema to be deleted. Valid values

for versionId are between [1,2^31-1] or the string "latest". "latest" deletes
the last registered schema under the specified subject. Note that there

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 180

may be a new latest schema that gets registered right after this request is
served.

Response JSON Object:

 int -- Version of the deleted schema

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found
o Error code 40402 -- Version not found

 422 Unprocessable Entity --
o Error code 42202 -- Invalid version

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store

Example request:

DELETE /subjects/test/versions/1 HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

1

Copy

7.6 Compatibility
The compatibility resource allows the user to test schemas for compatibility against specific versions of a
subject's schema.

POST /compatibility/subjects/(string: subject)/versions/(versionId: version)

Test input schema against a particular version of a subject's schema for compatibility. Note that the
compatibility level applied for the check is the configured compatibility level for the subject
(http:get:: /config/(string: subject)). If this subject's compatibility level was never changed, then

the global compatibility level applies (http:get:: /config).

Parameters:

 subject (string) -- Subject of the schema version against which
compatibility is to be tested

 version (versionId) -- Version of the subject's schema against which
compatibility is to be tested. Valid values for versionId are between

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 181

[1,2^31-1] or the string "latest". "latest" checks compatibility of the input
schema with the last registered schema under the specified subject

Response JSON Object:

 is_compatible (boolean) -- True, if compatible. False otherwise

Status Codes:

 404 Not Found --
o Error code 40401 -- Subject not found
o Error code 40402 -- Version not found

 422 Unprocessable Entity --
o Error code 42201 -- Invalid Avro schema
o Error code 42202 -- Invalid version

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store

Example request:

POST /compatibility/subjects/test/versions/latest HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

{
 "schema":
 "{
 \"type\": \"record\",
 \"name\": \"test\",
 \"fields\":
 [
 {
 \"type\": \"string\",
 \"name\": \"field1\"
 },
 {
 \"type\": \"int\",
 \"name\": \"field2\"
 }
]
 }"
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "is_compatible": true
}

Copy

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 182

7.7 Config
The config resource allows you to inspect the cluster-level configuration values as well as subject
overrides.

PUT /config

Update global compatibility level.

When there are multiple instances of Schema Registry running in the same cluster, the update
request will be forwarded to one of the instances designated as the primary. If the primary is not
available, the client will get an error code indicating that the forwarding has failed.

Request JSON Object:

 compatibility (string) -- New global compatibility level. Must be one of
BACKWARD, BACKWARD_TRANSITIVE, FORWARD,
FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE, NONE

Status Codes:

 422 Unprocessable Entity --
o Error code 42203 -- Invalid compatibility level

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store
o Error code 50003 -- Error while forwarding the request to the primary

PUT /config HTTP/1.1
Host: kafkaproxy.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

{
 "compatibility": "FULL",
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "compatibility": "FULL",
}

Copy

GET /config

Get global compatibility level.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 183

Request JSON Object:

 compatibility (string) -- New global compatibility level. Will be one of
BACKWARD, BACKWARD_TRANSITIVE, FORWARD,
FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE, NONE

Status Codes:
 500 Internal Server Error --

o Error code 50001 -- Error in the backend data store

Example request:

GET /config HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "compatibilityLevel": "FULL"
}

Copy

PUT /config/(string: subject)

Update compatibility level for the specified subject.

Parameters:
 subject (string) -- Name of the subject

Request JSON Object:

 compatibility (string) -- New global compatibility level. Must be one of
BACKWARD, BACKWARD_TRANSITIVE, FORWARD,
FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE, NONE

Status Codes:

 422 Unprocessable Entity --
o Error code 42203 -- Invalid compatibility level

 500 Internal Server Error --
o Error code 50001 -- Error in the backend data store
o Error code 50003 -- Error while forwarding the request to the primary

Example request:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 184

PUT /config/test HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

{
 "compatibility": "FULL",
}

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
 "compatibility": "FULL",
}

Copy

GET /config/(string: subject)

Get compatibility level for a subject.

Parameters:
 subject (string) -- Name of the subject

Request JSON Object:

 compatibility (string) -- New global compatibility level. Will be one of
BACKWARD, BACKWARD_TRANSITIVE, FORWARD,
FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE, NONE

Status Codes:

 404 Not Found -- Subject not found
 500 Internal Server Error --

o Error code 50001 -- Error in the backend data store

Example request:

GET /config/test HTTP/1.1
Host: schemaregistry.example.com
Accept: application/vnd.schemaregistry.v1+json, application/vnd.schemaregistry+json, applicat
ion/json

Copy
Example response:

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 185

{
 "compatibilityLevel": "FULL"
}

Please note that all the material included in APPENDIX B is taken from its online source found in [23].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 186

8 APPENDIX C to ANNEX
In this appendix the Kafka Connect API Reference is quoted as it appears in the relative online resource [9] for
convenience purposes and as requested:

The material in this appendix is Copyrighted by Confluent, Inc (© Copyright 2019, Confluent, Inc).

Since Kafka Connect is intended to be run as a service, it also supports a REST API for managing
connectors. By default this service runs on port 8083 . When executed in distributed mode, the REST API
will be the primary interface to the cluster. You can make requests to any cluster member; the REST API
automatically forwards requests if required.

Although you can use the standalone mode just by submitting a connector on the command line, it also
runs the REST interface. This is useful for getting status information, adding and removing connectors
without stopping the process, and more.

Currently the top level resources are connector and connector-plugins . The sub-resources for connector lists

configuration settings and tasks and the sub-resource for connector-plugins provides configuration
validation and recommendation.

Note that if you try to modify, update or delete a resource under connector which may require the request to
be forwarded to the leader, Connect will return status code 409 while the worker group rebalance is in
process as the leader may change during rebalance.

8.1 Content Types
Currently the REST API only supports application/json as both the request and response entity content

type. Your requests should specify the expected content type of the response via the HTTP Accept header:

Accept: application/json

Copy

and should specify the content type of the request entity (if one is included) via the Content-Type header:

Content-Type: application/json

Copy

8.2 Statuses & Errors
The REST API will return standards-compliant HTTP statuses. Clients should check the HTTP status,
especially before attempting to parse and use response entities. Currently the API does not use redirects
(statuses in the 300 range), but the use of these codes is reserved for future use so clients should handle
them.

When possible, all endpoints will use a standard error message format for all errors (status codes in the
400 or 500 range). For example, a request entity that omits a required field may generate the following
response:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 187

{
 "error_code": 422,
 "message": "config may not be empty"
}

Copy

8.3 Connectors

GET /connectors

Get a list of active connectors

Response JSON Object:

 connectors (array) -- List of connector names

Example request:

GET /connectors HTTP/1.1
Host: connect.example.com
Accept: application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

["my-jdbc-source", "my-hdfs-sink"]

Copy

POST /connectors

Create a new connector, returning the current connector info if successful. Return 409 (Conflict) if
rebalance is in process.

Request JSON Object:

 name (string) -- Name of the connector to create
 config (map) -- Configuration parameters for the connector. All values should be

strings.

Response JSON Object:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 188

 name (string) -- Name of the created connector
 config (map) -- Configuration parameters for the connector.
 tasks (array) -- List of active tasks generated by the connector
 tasks[i].connector (string) -- The name of the connector the task belongs to
 tasks[i].task (int) -- Task ID within the connector.

Example request:

POST /connectors HTTP/1.1
Host: connect.example.com
Content-Type: application/json
Accept: application/json

{
 "name": "hdfs-sink-connector",
 "config": {
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 }
}

Copy

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "name": "hdfs-sink-connector",
 "config": {
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 },
 "tasks": [
 { "connector": "hdfs-sink-connector", "task": 1 },
 { "connector": "hdfs-sink-connector", "task": 2 },
 { "connector": "hdfs-sink-connector", "task": 3 }
]
}

Copy

GET /connectors/(string:name)

Get information about the connector.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 189

Response JSON Object:

 name (string) -- Name of the created connector
 config (map) -- Configuration parameters for the connector.
 tasks (array) -- List of active tasks generated by the connector
 tasks[i].connector (string) -- The name of the connector the task belongs to
 tasks[i].task (int) -- Task ID within the connector.

Example request:

GET /connectors/hdfs-sink-connector HTTP/1.1
Host: connect.example.com
Accept: application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "hdfs-sink-connector",
 "config": {
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 },
 "tasks": [
 { "connector": "hdfs-sink-connector", "task": 1 },
 { "connector": "hdfs-sink-connector", "task": 2 },
 { "connector": "hdfs-sink-connector", "task": 3 }
]
}

Copy

GET /connectors/(string:name)/config

Get the configuration for the connector.

Response JSON Object:

 config (map) -- Configuration parameters for the connector.

Example request:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 190

GET /connectors/hdfs-sink-connector/config HTTP/1.1
Host: connect.example.com
Accept: application/json

Copy

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
}

Copy

PUT /connectors/(string:name)/config

Create a new connector using the given configuration, or update the configuration for an existing
connector. Returns information about the connector after the change has been made.
Return 409 (Conflict) if rebalance is in process.

Request JSON Object:

 config (map) -- Configuration parameters for the connector. All values should be

strings.

Response JSON Object:

 name (string) -- Name of the created connector
 config (map) -- Configuration parameters for the connector.
 tasks (array) -- List of active tasks generated by the connector
 tasks[i].connector (string) -- The name of the connector the task belongs to
 tasks[i].task (int) -- Task ID within the connector.

Example request:

PUT /connectors/hdfs-sink-connector/config HTTP/1.1
Host: connect.example.com
Accept: application/json

{
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 191

 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
}

Copy

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "name": "hdfs-sink-connector",
 "config": {
 "connector.class": "io.confluent.connect.hdfs.HdfsSinkConnector",
 "tasks.max": "10",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 },
 "tasks": [
 { "connector": "hdfs-sink-connector", "task": 1 },
 { "connector": "hdfs-sink-connector", "task": 2 },
 { "connector": "hdfs-sink-connector", "task": 3 }
]
}

Copy

Note that in this example the return status indicates that the connector was Created . In the case of

a configuration update the status would have been 200 OK .

GET /connectors/(string:name)/status

Get current status of the connector, including whether it is running, failed or paused, which worker it
is assigned to, error information if it has failed, and the state of all its tasks.

Response JSON Object:

 name (string) -- The name of the connector.
 connector (map) -- The map containing connector status.
 tasks[i] (map) -- The map containing the task status.

Example request:

GET /connectors/hdfs-sink-connector/status HTTP/1.1
Host: connect.example.com

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 192

Copy

Example response:

HTTP/1.1 200 OK

{
 "name": "hdfs-sink-connector",
 "connector": {
 "state": "RUNNING",
 "worker_id": "fakehost:8083"
 },
 "tasks":
 [
 {
 "id": 0,
 "state": "RUNNING",
 "worker_id": "fakehost:8083"
 },
 {
 "id": 1,
 "state": "FAILED",
 "worker_id": "fakehost:8083",
 "trace": "org.apache.kafka.common.errors.RecordTooLargeException\n"
 }
]
}

Copy

POST /connectors/(string:name)/restart

Restart the connector and its tasks. Return 409 (Conflict) if rebalance is in process.

Example request:

POST /connectors/hdfs-sink-connector/restart HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 200 OK

Copy

PUT /connectors/(string:name)/pause

Pause the connector and its tasks, which stops message processing until the connector is
resumed. This call asynchronous and the tasks will not transition to PAUSED state at the same time.

Example request:

PUT /connectors/hdfs-sink-connector/pause HTTP/1.1

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 193

Host: connect.example.com

Copy

Example response:

HTTP/1.1 202 Accepted

Copy

PUT /connectors/(string:name)/resume

Resume a paused connector or do nothing if the connector is not paused. This call asynchronous
and the tasks will not transition to RUNNING state at the same time.

Example request:

PUT /connectors/hdfs-sink-connector/resume HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 202 Accepted

Copy

DELETE /connectors/(string:name)/

Delete a connector, halting all tasks and deleting its configuration. Return 409 (Conflict) if
rebalance is in process.

Example request:

DELETE /connectors/hdfs-sink-connector HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 204 No Content

Copy

8.4 Tasks

GET /connectors/(string:name)/tasks

Get a list of tasks currently running for the connector.

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 194

Response JSON Object:

 tasks (array) -- List of active task configs that have been created by the connector
 tasks[i].id (string) -- The ID of task
 tasks[i].id.connector (string) -- The name of the connector the task belongs to
 tasks[i].id.task (int) -- Task ID within the connector.
 tasks[i].config (map) -- Configuration parameters for the task

Example request:

GET /connectors/hdfs-sink-connector/tasks HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 200 OK

[
 {
 "task.class": "io.confluent.connect.hdfs.HdfsSinkTask",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 },
 {
 "task.class": "io.confluent.connect.hdfs.HdfsSinkTask",
 "topics": "test-topic",
 "hdfs.url": "hdfs://fakehost:9000",
 "hadoop.conf.dir": "/opt/hadoop/conf",
 "hadoop.home": "/opt/hadoop",
 "flush.size": "100",
 "rotate.interval.ms": "1000"
 }
]

Copy

GET /connectors/(string:name)/tasks/(int:taskid)/status

Get a task's status.

Example request:

GET /connectors/hdfs-sink-connector/tasks/1/status HTTP/1.1
Host: connect.example.com

Copy

Example response:

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 195

HTTP/1.1 200 OK

{"state":"RUNNING","id":1,"worker_id":"192.168.86.101:8083"}

Copy

POST /connectors/(string:name)/tasks/(int:taskid)/restart

Restart an individual task.

Example request:

POST /connectors/hdfs-sink-connector/tasks/1/restart HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 200 OK

Copy

8.5 Connector Plugins

GET /connector-plugins/

Return a list of connector plugins installed in the Kafka Connect cluster. Note that the API only
checks for connectors on the worker that handles the request, which means it is possible to see
inconsistent results, especially during a rolling upgrade if you add new connector jars.

Response JSON Object:

 class (string) -- The connector class name.

Example request:

GET /connector-plugins/ HTTP/1.1
Host: connect.example.com

Copy

Example response:

HTTP/1.1 200 OK

[
 {
 "class": "io.confluent.connect.hdfs.HdfsSinkConnector"
 },
 {
 "class": "io.confluent.connect.jdbc.JdbcSourceConnector"

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 196

 }
]

Copy

PUT /connector-plugins/(string:name)/config/validate

Validate the provided configuration values against the configuration definition. This API performs
per config validation, returns suggested values and error messages during validation.

Request JSON Object:

 config (map) -- Configuration parameters for the connector. All values should be

strings.

Response JSON Object:

 name (string) -- The class name of the connector plugin.
 error_count (int) -- The total number of errors encountered during configuration

validation.
 groups (array) -- The list of groups used in configuration definitions.
 configs[i].definition (map) -- The definition for a config in the connector plugin,

which includes the name, type, importance, etc.
 configs[i].value (map) -- The current value for a config, which includes the name,

value, recommended values, etc.

Example request:

PUT /connector-plugins/FileStreamSinkConnector/config/validate/ HTTP/1.1
Host: connect.example.com
Accept: application/json

{
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": "1",
 "topics": "test-topic"
}

Copy

Example response:

HTTP/1.1 200 OK

{
 "name": "FileStreamSinkConnector",
 "error_count": 1,
 "groups": [
 "Common"
],
 "configs": [
 {
 "definition": {

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 197

 "name": "topics",
 "type": "LIST",
 "required": false,
 "default_value": "",
 "importance": "HIGH",
 "documentation": "",
 "group": "Common",
 "width": "LONG",
 "display_name": "Topics",
 "dependents": [],
 "order": 4
 },
 "value": {
 "name": "topics",
 "value": "test-topic",
 "recommended_values": [],
 "errors": [],
 "visible": true
 }
 },
 {
 "definition": {
 "name": "file",
 "type": "STRING",
 "required": true,
 "default_value": "",
 "importance": "HIGH",
 "documentation": "Destination filename.",
 "group": null,
 "width": "NONE",
 "display_name": "file",
 "dependents": [],
 "order": -1
 },
 "value": {
 "name": "file",
 "value": null,
 "recommended_values": [],
 "errors": [
 "Missing required configuration \"file\" which has no default value."
],
 "visible": true
 }
 },
 {
 "definition": {
 "name": "name",
 "type": "STRING",
 "required": true,
 "default_value": "",
 "importance": "HIGH",
 "documentation": "Globally unique name to use for this connector.",
 "group": "Common",
 "width": "MEDIUM",
 "display_name": "Connector name",
 "dependents": [],
 "order": 1
 },
 "value": {
 "name": "name",
 "value": "test",
 "recommended_values": [],
 "errors": [],
 "visible": true

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 198

 }
 },
 {
 "definition": {
 "name": "tasks.max",
 "type": "INT",
 "required": false,
 "default_value": "1",
 "importance": "HIGH",
 "documentation": "Maximum number of tasks to use for this connector.",
 "group": "Common",
 "width": "SHORT",
 "display_name": "Tasks max",
 "dependents": [],
 "order": 3
 },
 "value": {
 "name": "tasks.max",
 "value": "1",
 "recommended_values": [],
 "errors": [],
 "visible": true
 }
 },
 {
 "definition": {
 "name": "connector.class",
 "type": "STRING",
 "required": true,
 "default_value": "",
 "importance": "HIGH",
 "documentation": "Name or alias of the class for this connector. Must be a su
bclass of org.apache.kafka.connect.connector.Connector. If the connector is org.apache.kafka.
connect.file.FileStreamSinkConnector, you can either specify this full name, or use \"FileSt
reamSink\" or \"FileStreamSinkConnector\" to make the configuration a bit shorter",
 "group": "Common",
 "width": "LONG",
 "display_name": "Connector class",
 "dependents": [],
 "order": 2
 },
 "value": {
 "name": "connector.class",
 "value": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "recommended_values": [],
 "errors": [],
 "visible": true
 }
 }
]
}

Please note that all the material included in APPENDIX C is taken from its online source found in [9].

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 199

9 APPENDIX D to ANNEX
In this appendix high resolution images of the fully detailed class diagrams are made available for reference
purposes. The images are of sufficient quality and can be zoomed in for readability.

9.1 Kafka Producer type Connector for the VFI historical data Class Diagram

Figure 9.1 Kafka Producer type Connector for the VFI historical data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 200

9.2 Kafka Connect type Connector for the VFI live data Class Diagram

Figure 9.2 Kafka Connect type Connector for the VFI live data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 201

9.3 Kafka Connect type Connector for the SIS METRICS data Class Diagram

Figure 9.3 Kafka Connect type Connector for the SIS METRICS data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 202

9.4 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram

Figure 9.4 Kafka Connect type Connector for the SIS VOUCHER data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 203

9.5 Kafka Producer type Connector for the SIS METRICS data Class Diagram

Figure 9.5 Kafka Producer type Connector for the SIS METRICS data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 204

9.6 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram

Figure 9.6 Kafka Producer type Connector for the SIS VOUCHER data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 205

9.7 Kafka Producer type Connector for the PAP reconstructed journey data Class
Diagram

Figure 9.7 Kafka Producer type Connector for the PAP reconstructed journey data Class Diagram

D2.3 Development of Toolboxes Integration Connectors

© TRACK&KNOW, 2019 Page | 206

9.8 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class
Diagram

Figure 9.8 Kafka Connect type Connector for the VFI/PAP Smartphone app live data Class Diagram

