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Abstract — This paper describes an ongoing work on the 

analysis of mobility data of individual users aimed to predict the 

user’s risk of experiencing a crash in the near future. The 

suggested approach looks at descriptive features of the user’s 

driving behavior, both in terms of driving style and general 

mobility demand. The latter point is addressed through a 

Individual Mobility Network model. Preliminary promising 

results and next challenges are finally discussed. 
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I. INTRODUCTION 

Driving safety is one major issue in modern urban setting, 
due to the presence of distressing traffic situations and 
frequent accident events involving vehicles. While some 
factors have been clearly identified as potential causes of 
accidents (e.g. long drives, lack of proper visibility, bad 
weather conditions), identifying risky situations and 
predicting crashes still remains an open area for research. 

In this work we address the problem from an individual  
mobility data perspective, analyzing the mobility of users 
based on GPS traces of private vehicles, and trying to identify 
features of the mobility and driving behavior of the user that 
are correlated with accidents. Differently from most existing 
approaches, that examine the problem either from a 
geographical and temporal perspective (i.e. identifying the 
areas and the hours of the day where the risk of accidents is 
higher) or from a real-time one (i.e. identify the instantaneous 
conditions that are likely to lead to accidents), our proposal 
consists in analyzing the mobility of users on the medium and 
long term, extracting overall behaviors and regularities that 
can be linked to higher rates of accidents. 

In the following we introduce a basic tool for summarizing 
the mobility of an individual, namely Individual Mobility 
Networks, and then discuss how the user’s driving can be 
characterized. Afterward, we point out existing issues in 
applying predictive models in different geographical areas. 
Finally, we show some preliminary results and conclude the 
paper with final remarks and future works. 

II. INDIVIDUAL MOBILITY NETWORKS 

Individual Mobility Networks are a concise graph 
representations of the mobility history of individuals. From 
raw GPS traces the trajectories of a single mobility user are 
reconstructed and processed to infer the relevant locations that 
the user visited (the nodes of IMNs) and aggregate the trips 
between two locations (the edges of IMNs). Nodes and edges 
are enriched with several statistics of the associated trips, such 
as temporal distributions and distances. Figure 1 shows a 
pictorial representation of a IMN. 

 

Fig. 1. Sample Individual Mobility Network. Nodes represent locations, 

edges (direction is clock-wise) represent flows between locations. 

Users with different mobility needs and habits show 
different IMNs, as it can be seen from Figure 2, which depicts 
several examples extracted from different cities in Tuscany, 
which reveals a high variability of mobility behaviours both 
within and across cities. That suggests that characterizing 
IMNs can provide a distinctive description of users. 

 

Fig. 2. IMNs from several individuals over four cities in Tuscany. Thicker 

and red nodes/edges represent frequent ones. 

 

III. CRASH PREDICTION 

Crash risk can be defined as the probability of accidents, 
which are (in statistical terms) rare events. That, together with 
the lack of a clear set of predictive indicators to adopt, make 
the risk prediction a difficult task.  

The solution proposed and under development in this work 
follows a standard machine learning approach: first we 
analyze the trajectories of each user to extract descriptive 
features, and then a predictive model is trained on a labelled 
dataset (i.e. a dataset containing users that had accidents and 
users that did not, with a label distinguishing them). The key 
point is to define an effective set of features, able to capture 
those aspects that are correlated with the crash risk.  

Here we consider two types of features: those describing 
basic driving behaviours of the user (speeds, frequency of 
accelerations, cornerings, etc.), and IMNs ones, describing 
how driving features are distributed on the IMNs. 



A. Movement features 

Through the analysis of the travels performed by the user, 

we extract the following categories of features: 

 Travel features: they include statistics about the 

length and duration of the trips, average speed, also 

split into periods of the day or of the week. 

 Events features: they include the frequency and 

intensity of driving events, i.e. accelerations and 

decelerations, also divided in temporal intervals 

Where available, additional information about the vehicle 

(brand or model) is considered. 
 

B. IMNs features 

When the single trips of a user are organized in a IMN, we 
are able to capture all the semantic categories that IMNs allow 
to infer (frequent routes, central vs. peripheral locations w.r.t. 
the IMN). A first set of features includes network statistics of 
the IMN structure, such as number of locations and links, 
network clustering coefficients, network modularity index, 
etc. Moreover, all the movement statistics mentioned in the 
previous section can be transferred to the corresponding 
portion of the IMN, thus enabling to extract more semantic 
aggregates, e.g. frequency of accelerations on routinary trips. 

Finally, IMNs can be enriched with information about the 
types of environment the user usually traverses: road 
categories, weather conditions, expected traffic density during 
driving time, etc., which can in turn be used for inferring even 
more specific aggregates. 

IV. GEOGRAPHICAL ADAPTIVITY OF MODELS 

Most analyses and models extracted from mobility data are 
highly dependent on the characteristics of the territory under 
study. In particular, it is known that mobility models extracted 
in one region might not work well in other ones, thus raising 
an issue of transferring models across different areas. At the 
same time, the analyses considered in this work requires the 
availability of massive, labelled mobility data that is difficult 
to have in all areas of interest, therefore producing a model out 
of a data-rich area and making it usable in other areas would 
be of extreme value. 

In this direction, the ongoing work of this research tries to 
address the problem by characterizing different areas based on 
a wide variety of indicators, with the aim of better assessing 
the similarity of different geographical areas. The idea is that 
models are more easily transferrable between similar areas, 
and it might be possible to devise mechanisms to adapt models 
across areas with different characteristics. Preliminary 
experiments on a simpler traffic prediction problem show that 
this approach, carried out considering the two families of 
features described above, can help identifying areas across 
which the model transfer has better chances of working.  

V. EXPERIMENTAL SETTING AND PRELIMINARY RESULTS 

The approaches described above have been preliminary tested 
over a dataset of GPS vehicle traces that include acceleration 
events and a number of actual crashes. The results commented 
here focus on users of the area of Rome (Italy), while ongoing 
experiments are generalizing them also to Tuscany and the 
area of London (see Figure 3). 

 

Fig. 3. Area of experimentation. Preliminary results are focused on Rome 

area (lower part of left figure) 

For each user the data over 4 months was used to extract 

all the movement features mentioned in Section III.A 

(ongoing work also includes IMNs features). In addition, 

each user is labeled according to the presence of accidents 

during the next month. The resulting dataset has been used as 

input for various traditional machine learning models, 

including Random Forests, Support Vector Machines and 

Neural Networks. RFs yielded the best and more stable 

results, shown in Figure 4. The table also divides 

performances over different subsets of features (traj = travel 

only, evnt = events only, evnt = both, all = include also 

additional information about brand and model). 

Fig. 4. Performances over different subsets of features 

The results show that all feature types bring some 
improvement. Also, we remark that the problem is imbalanced 
(around 1 crash every 5 users in this sample dataset), therefore 
a high recall is as valuable as a high accuracy. 

VI. CONCLUSIONS 

This ongoing work tackles a challenging task from an 
alternative, individual-based angle, aiming to improve 
predictability of crashes. Yet, predicting risk is only the first 
step to prevention. The future lines of research of this work 
will aim to extract prescriptive rules out of predictions, which 
is a difficult task because best performing predictors are 
usually black-boxes, inherently non human-readable. 
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