Dissecting traffic flows in

congestion areas using GPS data

Feng Liu, Muhammad Adnan, Ansar yasar, Davy Janssens

Institute for MOBility (IMOB), Hasselt University, Belgium

- Problem statement and the goal of this study
- GPS data
- Methodology
- Preliminary results

Track & Know Introduction

The Track & Know platform is designed to provide a variety of tools that can operate stand alone or in conjunction with each other.

- Track & Know Big data Platform
- Track & Know Tool boxes
 - Big data Processing
 - Big data Analytics
 - Big data Visual Analytics
- Big data Use Cases
 - Three Pilots use cases; Mobility, Insurance and Health

The Mobility use case (Vodafone Innovus (VFI)) can be summed into 3 categories:

- Error detection and correction (GPS location, speed etc.)
- Route features aggregation and prediction (trajectory statistics, hot spots, prediction of a route and its components like average speed, mileage, fuel consumption)
- Driver behavior (categorize, correlate road condition with fuel and driver behavior)

- Problem statement and the goal of this study
- GPS data
- Methodology
- Preliminary results

- Data: by Vodafone Innovus
- □ Location based data
- □ 7500 vehicles
- □ 216GB
- □ Period: 01/06/2017 01/06/2018
- □ Vehicle types (15): Passenger Car, Bus, Van,...
- Data used for the preliminary results:
- □ 12,213 Files under 55 Folders
- □ 533 vehicles (7.1% of the total)
- □ 3.46 GB
- □ Period: 08/10/2017 12/10/2018 (5 weekdays)

- Problem statement and the goal of this study
- GPS data
- Methodology
- Preliminary results

Step 1: Trip extraction

Each GPS point: p_i(lat_i, lon_i, t_i, v_i, engineStatus_i, vehicle_i, vehicleT_i)

Travel time:

$$T_{Trip} = t_d - t_o$$

- Spatial partition
- **zones:** *Grid_X* × *Grid_Y*

T_{zr} z=1...Grid_X × Grid_Y

- Temporal partition
- TimeP: different time periods of a day
- DayT: different types of the day

- Zone-traffic-condition-matrix: Z(rz, TimeP, Day, DayT)
- OD-travel-pattern-matrix: OD(r_o, r_d, TimeP, Day, DayT)

Zone-traffic-condition-matrix Z(*r_z*, *TimeP*, *Day*, *DayT*): *average driving speed of each zone*

• Each matrix element • Total number of points M_z in r_z • Average speed of the points $V_z = V_z(r_z, TimeP, Day, DayT) = \frac{\sum_{z} v_z^{(k)}}{M_z}$ • Track & Know

OD-travel-pattern-matrix OD($r_{o'}$, $r_{d'}$, **TimeP**, **Day**, **DayT**): travel demand between origin and destination zones

- Each matrix element
- **\Box** Total number of trips between r_o and r_d
- Average travel time, speed and route directness over all the trips

$M_{o,d}$ ΣU_k **Average travel time:** $U_{o,d} \cong U_{o,d}(r_o, r_d, TimeP, Day, DayT) = \underline{k=1}$ $M_{0.d}$ $M_{o,d}$ Average travel speed: $\sum Vk$ $V_{o,d} \cong V_{o,d}(r_o, r_d, TimeP, Day, DayT) = \frac{k=1}{k=1}$ $M_{0.d}$ $M_{o,d}$ **Average route directness:** $\sum Rk$ $R_{o,d} \stackrel{\widehat{=}}{=} R_{o,d}(r_o, r_d, TimeP, Day, DayT) = \frac{k=1}{M_{o,d}}$

- Zone-traffic-condition-matrix: Z(rz, TimeP, Day, DayT)
- Zones with congestion on a day
 Total number of points: M_z >TH_{MZ}
 Average speed: V_z < TH_{VZ}
- The probability of congestion on multiple days
 P>TH_P

Step 4: Traffic flow dissecting in a congestion area

OD-travel-pattern-matrix: OD(r_o, r_d, TimeP, Day, DayT)

Track & Know

Proiect each OD trips into zones

Step 5: Alternative route searching

Search for alternative routes that avoid the congestion zones

- Problem statement and the goal of this study
- GPS data
- Methodology
- Preliminary results

- 23934 trips over 533 vehicles and 5 weekdays
- 8.98 trips/vehicle and day

Fig. Distribution of average speeds and number of trips per half an hour

- Zone-traffic-condition-matrix: Z(rz, TimeP, Day, DayT)
- OD-travel-pattern-matrix: OD(r_o, r_d, TimeP, Day, DayT)

z=1,...,400x400, Each zone: 1.62 km²
 TimeP=1...7
 Day=1...5
 DayT=weekdays, weekends and holidays

In this case study, morning commute (7-9am) on weekdays!

<u>Result 3: Congestion zones ($M_z > 50/day, V_z < 20$,</u> and $P \ge 0.8$)

Track & Know

Fig. The average speed and number of points each zone in the morning Track & Know

)W

now

Result 4: Traffic flow dissecting

	Region_x_id_old	Region_y_id_old	Average_Speed_Zone	Number_Of_Points_Zone
1	219	175	5.7049180328	183
2	15	219	6.2388059701	67
3	328	114	6.6515151515	66
4	180	179	6.8055555556	72
5	208	84	6.8709677419	62
6	213	181	7.8961038961	77
7	280	113	8.1206896552	116
8	240	153	8.84375	64
9	377	217	9.74	50
10	204	226	10.245283019	53
11	201	207	10.324324324	74
12	175	238	10.431034483	58
13	21	277	10.825396825	63
14	369	284	11.053571429	56
15	181	230	11.205479452	219
16	157	175	12.696202532	79
17	178	233	12.722627737	137
18	328	115	12.737179487	156
19	182	232	12.90376569	239
20	348	175	12.98265896	173
21	350	182	13.130434783	115
22	348	184	13.226315789	190
23	286	152	13.4	55
24	346	184	13.436363636	55
25	286	151	13.592592593	81
26	327	115	13.755102041	735
27	177	233	13.837719298	228
28	19	316	14.207792208	77
29	345	184	14.23655914	186
30	30	247	14.381578947	76
31	375	307	14.407407407	81
32	325	157	14.465753425	73
33	15	314	14.510869565	92
34	347	195	14.502002003	135
35	183	228	14.568668407	1915
36	182	220	14.047550300	4/1
~~~~				



35, (183, 228), 14.6km/h, > 383/day

Track & Know



now





Track & Know





# (183,228): 217 trips

- Start and/or end: 41.9%
- □ Start: 16.1%
- □ End: 4.1%
- □ Inside: 21.7%
- Passing: 58.1%
- □ 6->3: 17.1%
- □ 1->8: 6.9%
- □ 6->8: 4.1%
- □ 7->3: 4.1%
- □ 3->6: 3.7%
  - □ 7->2: 2.7%





- **Passing: 58.1%**
- □ 6->3: 17.1%
- □ 1->8: 6.9%
- □ 6->8: 4.1%
- □ 7->3: 4.1%
- □ 3->6: 3.7%
- □ 7->2: 2.7%



Track & Know

OW



 $\sim$ 

- -

Track & Know

#### **Result 5: Alternative route searching**





**Track & Know** 



#### **Future work**

- *Extend* the size of the data to be used
- *Find* alternative routes and *compare* these routes with

the currently observed ones

- Visualize the results using visualization tools
- *Suggest* policy measures
- Change regular grids into spatial compartment?





# Thank you!

(feng.liu@uhasselt.be)

